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ABSTRACT 

Zaare, M., and Jafari, H. 2013. Quantitative trait loci diversity for salt tolerance at the early growth stage of barley 
(Hordeum vulgare L.). Crop Breeding Journal 3(2): 69-77.  

 
Salt tolerance in crops is multigenic in nature and quantitatively inherited, and therefore controlled by minor 

genes. To study the diversity of QTLs conferring salt tolerance in barley, four barley mapping populations including 
L94 × Vada (L × V, 103 RILs), Oregon Wolf Barley (OWB) (Dom × Rec, 94 DHs), SusPtrit × Vada (Su × V, 152 
lines), and SusPtrit × Cebada Capa (Su × CC, 113 lines) were tested; L × V and OWB showed unexpected 
segregation for salt tolerance at an early growth stage and were selected for this study. Two morphological traits 
(shoot length and total root length) were quantified under different salinity levels (0, 200 and 300 mM of NaCl) at an 
early growth stage. In total, eight QTLs were mapped in OWB and eight QTLs were mapped in L × V under 200 
and 300 mM NaCl; of these, only two QTLs were common to the two populations. In the OWB and L × V 
populations, two and one QTLs were shared between two traits, respectively. Comparing QTL positions on a 
consensus map of barley showed that the number and location of the identified salt tolerance QTLs varied 
depending on the different NaCl concentrations and barley genotypes. Hence, there is a high diversity of QTLs 
conferring salt tolerance at the early growth stage of barley. In each barley genotype, a set of specific QTLs was 
responsible for salt tolerance and very few QTLs were common to them.  
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INTRODUCTION 

rop plants are exposed to various biotic and 
abiotic stresses under field conditions that may 

reduce yield by 50% (Bray et al., 2000; Vij and 
Tyagi, 2007). Soil salinity is an increasingly serious 
environmental problem that affects about 6% of all 
the land in the world, as well as 20% of irrigated 
agricultural lands, while significantly reducing 
agricultural production over large areas of the 
world’s farmlands (FAO, 2002; Rengasamy, 2006, 
2010). 

Due to the constantly growing world population 
and its food requirements, it is important to find 
ways of using marginal lands, including saline lands, 
and of increasing the yield of crop plants that grow 
in such soils. So far, development of various 
management approaches such as irrigation and 
drainage, and domestication of halophytes as new 
crops to improve the productivity of saline soils 
have had little success (Colmer et al., 2005; Pitman 
and Läuchli, 2002). Thus, the development of salt 
tolerant crops has become an important global 
priority (Yamaguchi and Blumwald, 2005); an 

understanding of the genetics of salt tolerance and 
the application of efficient breeding methods to 
develop salt tolerant varieties offer a strategy that 
could make it possible to produce crops in salt-
affected areas (Mano and Takeda 1997). 

Salt tolerance is defined as the “ability of plants 
to grow and complete their life cycle on a substrate 
that contains high concentrations of soluble salt” 
(Parida and Das, 2005). Many plants develop 
different mechanisms either to exclude salt from 
their cells or to tolerate its presence within them. 
Understanding how plants tolerate this stress is an 
important step towards developing strategies to 
improve salt stress tolerance (Colmer et al., 2005; 
Parida and Das, 2005). 

Improving salt tolerance in crops is considered 
difficult because it is a multigenic and quantitatively 
inherited trait (Nazar et al., 2011). Crop yield 
assessment is a useful criterion for evaluating plant 
responses to environmental stresses such as salinity. 
However, the basic genetic mechanisms for grain 
yield are complex due to environmental effects. The 
complicated inheritance and low heritability of grain 
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yield and biomass have limited the effectiveness of 
selection for these traits under salinity stress 
(Ashraf, 1994). 

Various conventional and modern breeding 
approaches have been used to improve the salt 
tolerance of crops by introducing genes for salt 
tolerance into adapted cultivars (reviewed by Munns 
et al., 2006; Yamaguchi and Blumwald, 2005). The 
aim of these breeding approaches has been to exploit 
the variation for salt tolerance present in crops and 
their progenitors or close relatives, in order to 
develop new varieties with more tolerance than 
commercial cultivars. The greatest gains from 
diversity within a crop species can be achieved by 
selecting for specific traits from a series of donor 
parents and then recombining them, as discussed by 
Yeo and Flowers (1986). This pyramiding approach 
may allow improving salt tolerance beyond the 
levels currently available within a specific crop. 
However, such an objective requires that underlying 
minor genes be identified in advance. 

QTLs for phenotypic parameters associated with 
salt tolerance in different plant species have been 
identified (see Mano and Takeda, 1996, 1997; 
Foolad et al., 1999; Xue et al., 2009; Shavrukov et 
al., 2011; Rivandi et al., 2011; Zhou et al., 2012; 
Eleuch et al., 2008; Genc et al., 2010; Xu et al., 
2012). In many plant species (including tomato, rice, 
barley, citrus, and arabidopsis), QTLs conferring salt 
tolerance have been mapped on different 
chromosomal locations at various growth stages 
(Mano and Takeda, 1996, 1997; Foolad et al., 1999; 
Foolad and Lin, 1997; Quesada et al., 2002; Flowers 
and Flowers, 2005; Yano and Sasaki, 1997) and 
under different salinity levels (Monforte et al., 
1997b; Foolad et al., 1999).  

Another feature of QTLs associated with salt 
tolerance may be the diversity of QTLs that control 
the trait; also, the location of QTLs may differ from 
one genotype to another of the same crop species, 
but there is not enough information to address this 
aspect of salt tolerance. To address this question, in 
this study we tested six barley accessions, the 
parents of four mapping populations. All four barley 
mapping populations had been used for mapping 
QTLs for traits other than salt tolerance. 
Surprisingly, we found segregation for salt tolerance 
at an early growth stage in the commonly used 
Oregon Wolfe Barley (OWB) reference mapping 
population (Costa et al., 2001). We also found clear 
segregation for salt tolerance in L94 × Vada, a 
mapping population that was developed at 
Wageningen University for mapping QTLs for 
partial resistance to Puccinia hordei (Qi et al., 
1998). The availability of two populations 

segregating for salt tolerance allowed us to map 
QTLs for salt tolerance and address the question of 
whether barley accessions share the same salt 
tolerance genes or whether different genes control 
salt tolerance in different barley accessions. This 
will lead to an understanding of the pattern of 
inheritance of salt tolerance in barley and would 
explain the diversity of salt tolerance genes. 

 
MATERIALS AND METHODS 

Plant materials 
Four mapping populations of barley were used in 

this study, including three recombinant inbred line 
(RIL) populations developed at Wageningen 
University (The Netherlands) and a doubled haploid 
(DH) population developed in North America. The 
RIL populations consisted of lines derived from 
crosses between L94 and Vada (L × V, 103 lines; Qi 
et al., 1998), between SusPtrit and Vada (Su × V, 
152 lines; Jafary et al., 2006), and between SusPtrit 
and Cebada Capa (Su × CC, 113 lines; Jafary et al., 
2008). The DH population, consisting of lines 
derived from crosses between Dom and Rec (OWB, 
94 lines; Costa et al., 2001), is a reference mapping 
population that has been subjected to extensive 
genotyping and phenotyping. 
 
Available linkage mapping data 

The available data sets of the three RIL 
populations consisted predominantly of AFLP 
markers. The marker segregation data for L × V 
were obtained from Qi et al. (1998), whereas for Su 
× V and Su × CC, marker segregation data were 
obtained from Jafary et al. (2006; 2008). The OWB 
segregation data sets were downloaded from the 
Oregon State University (USA) Barley Project web 
site (http://www.barleyworld.org/).  

Locus genotype files that include marker 
information were downloaded from the above 
sources. To prepare the skeleton map and the data 
files as the map file for QTL mapping, the more 
reliable markers distributed throughout the genome 
that had been used for constructing the saturated 
map were selected to construct a map file with 
suitable marker spacing (about 5-10 cM). From 769 
markers in the locus genotype file, a subset of 133 
markers was used as a skeleton map of OWB. The 
base maps of other mapping populations were 
constructed based on the same considerations. 
 
Screening parents of the mapping populations for 
salt tolerance 

We screened parents of available mapping 
populations under different salinity levels to identify 
those showing different reactions to the levels of 
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salinity. For this purpose, parents were tested in 0, 
100, 200 and 300 mM NaCl using a randomized 
complete block design with three technical and two 
biological replications. Fifteen seeds of each parent 
were rolled between two layers of filter paper and 
placed vertically in individual plastic containers. 
About 100 mL of just one of the above mentioned 
NaCl solutions were added to each container; the 
containers were then placed in an aquarium 
containing double-distilled water. The aquarium was 
covered with nylon and placed in an incubator in 
darkness at 21±1 ºC. 

After 10 days of incubation, morphological traits 
including root length (total, maximum and mean 
root length), number of roots, and length of 
coleoptiles and shoots were measured. A t-test was 
performed on each pair of parents to identify 
statistical differences between parents of each 
population. We then selected two mapping 
populations (OWB-DH and L × V-RIL) whose 
parents showed significant polymorphism for the 
evaluated traits. 
 
Testing populations for salt tolerance 

Based on the parents’ tests, all available 
individuals of the two selected populations (OWB-
DH and L × V-RIL) were examined in 0, 200 and 
300 mM NaCl using a randomized complete block 
design with three technical and two biological 
replicates. The treatment and assessment methods 
were the same as those used on the parents, except 
that in these experiments, we used 20 seeds per line. 

 
QTL analyses 

QTL analysis in both RIL and DH populations 
was performed using Map QTL5 software (Van 
Ooijen, 2004). To map QTLs for salt tolerance, 
interval mapping was performed for each measured 
trait in two replications and the average separately. 
The QTL mapping procedure was followed by 
automatic co-factor selection, multiple QTL 
mapping (MQM) and restricted MQM mapping. 
Significant LOD thresholds at the 5% probability 
level were obtained for each trait by running a 
permutation test on the data sets. The QTLs detected 
in two replications and in the average of two 
replications at a salinity level were considered as 
accepted QTLs. 

 
Comparing QTL positions on the barley map 

To compare the distribution of QTLs for salt 
tolerance and find potentially overlapping QTLs 
mapped in the two different populations, an 
integrated consensus map of barley constructed by 
Marcel et al. (2007) was used. This high-density 

map was constructed based on six mapping 
populations, of which two (OWB-DHs and L × V-
RILs) were used in the present study. The consensus 
map contains 3,258 markers spanning 1,081 cM with 
an average distance between two adjacent loci of 
0.33 cM, and has been divided into 210 BINs of 
about 5 cM each. MapChart software (Voorrips, 
2002) was used to show QTL locations on the map. 

 
RESULTS 

Reaction of parents of four segregating 
populations to salt stress 

Data analyses showed that the parents (L94 and 
Vada) of the L × V population had different 
reactions to salinity (0, 200 and 300 mM NaCl; data 
not shown) in two evaluated traits (total root length 
and shoot length); this population was therefore used 
to map QTLs involved in salt tolerance. Similarly, 
the parents of the OWB mapping population (Dom × 
Rec) showed different reactions to different levels of 
salinity. Therefore, the OWB mapping population 
was used to determine whether QTLs conferring salt 
tolerance in the L × V mapping population were the 
same as those mapped in the OWB mapping 
population.  

 
Correlation between traits and replications 

The estimated correlation between two measured 
traits was r = 0.54 in 0 mM NaCl in the L × V 
population, and it increased to 0.61 and 0.69 in 200 
and 300 mM NaCl, respectively. The correlation 
between two traits was mainly high (e.g., r = 0.88 
for 300 mM NaCl in OWB). The estimated 
correlation coefficient between replications in OWB 
for 300 mM NaCl for both root and shoot length was 
r = 0.77. These values for 300 mM NaCl in the L × 
V population were r = 0.56 and r = 0.45, and for 200 
mM NaCl r = 0.44 and r = 0.42 for root and shoot 
length, respectively. The high correlation between 
replications implies the repeatability of the 
experiment. As the salinity level increased, the 
correlation between traits and between replications 
also increased. Frequency distribution graphs for 
both traits at different levels of salinity were 
continuous in the two mapping populations, as 
expected for quantitative and polygenic traits (due to 
the high number of graphs, they are not shown here). 

 
QTLs mapped in the OWB population 

In this study, eight QTLs were mapped for root 
and shoot length; of these, two QTLs on 
chromosomes 1(7H) and 2(2H) were common for 
both traits (Tables 1 and 2; Fig. 1). The most 
effective QTL was located between Bmac0303a-Nud 
markers on chromosome 1(7H), which explains 47%  
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Table 1. QTLs for total root length detected in the L × V and OWB populations under different salinity levels. 
Pop. Salinity level Chromosome Position (cM)* LOD Flanking markers Additive** 
OWB 300 1(7H) 57.7-112.5 10.51 Bmac0303a Nud -21.7 
OWB 300 2(2H) 52.7-68.5 3.24 ABG356 Bmac0144f 12.6 
OWB 300 2(2H) 92.7-123.1 3.82 Bmac0144b ABG072 14.4 
OWB 300 7(5H) 154.9-214.5 4.45 ABG496 ABG391 -16.8 

LV 300 4(4H) 3.0-26.3 6.94 GBM1252 E37M33-191 22.4 
LV 200 2(2H) 161.0-173.6 4.20 E40M32-590 E42M40-644 -24.8 
LV 200 3(3H) 7.1-35.2 3.33 E42M32-116 E41M40-358 -21.4 
LV 200 4(4H) 19.3-36.1 5.10 GBM1252 E37M33-191 32.0 
LV 0 5(1H) 104.2-117.4 4.10 P16M50-378 E37M32-260 -7.0 
LV 0 6(6H) 43.9-59.6 3.90 E35M61-269 E35M55-216 -5.0 

* Positions of QTLs ± 2 cM as confidence interval. 
** Additive effect of QTLs. 
Rows in boldface indicate common QTLs. 

 
Table 2. QTLs for shoot length detected in the L × V and OWB populations under different salinity levels. 

Pop. Salinity level Chromosome Position (cM)* LOD Flanking markers Additive** 
OWB 300 1(7H) 58.7-118.2 8.17 Bmac0303a Nud -6.90 
OWB 300 2(2H) 85.0-115.0 3.37 Bmac0144b ABG072 5.00 
OWB 300 2(2H) 115.0-140.0 3.73 ABG072 cnx1 4.50 
OWB 300 2(2H) 14.0-170.0 3.24 Zeo wst 4.10 

LV 300 2(2H) 65.6-75.6 5.20 E42M32-324 E33M54-187 -5.50 
LV 300 4(4H) 66.0-84.4 4.90 EBmac0701 E33M58-504 5.00 
LV 200 5(1H) 42.4-59.7 6.00 E33M54-263 P15M53-163 -5.10 
LV 200 4(4H) 1.0-20.3 3.10 P14M54-435 E42M40-94 4.00 
LV 0 (6H) 115.3-129.9 6.00 P15M53-525 MWG897 -0.07 

* Positions of QTLs ± 2 cM as confidence interval. 
** Additive effect of QTLs. 
Rows in boldface indicate common QTLs. 
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Fig. 1. Position of QTLs mapped for total root length and shoot length under different salinity levels in the 
OWB mapping population.  
Note: Bars show the positions of QTLs ± 2 cM as confidence interval;   Detected QTLs for root length;   
Detected QTLs for shoot length. Numbers on the bars indicate the level of salinity, R indicates QTL detected 
for total root length, and S indicates QTL detected for shoot length.  

 
and 30% of root and shoot length variance, 
respectively. One of the QTLs detected on 
chromosome 2(2H) (between E38M54-134 and 
E38M54-176) for root length was the same as the 
QTL in the L × V population under 200 mM NaCl, 
and one QTL on chromosome 2(2H) (between 
E33M55-109 and ABG356) was the same as the 
QTL in the L × V population under 300 mM NaCl 
for root length. However, the OWB population did 

not have any QTLs in common with the L × V 
population under control conditions (Fig. 3). 

 
QTLs mapped in the L × V population 

Under 300 mM NaCl, three QTLs (one for root 
length and two for shoot length, with no QTLs in 
common) were detected (Fig. 2). One QTL under 
300 mM NaCl was the same as a QTL under 200 
mM NaCl mapped on chromosome 4(4H) (between  
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Fig 2. Position of QTLs mapped for total root length and shoot length under different salinity levels in the L × V mapping 
population.  
Note: Bars show the positions of QTLs ± 2 cM as confidence interval;   Detected QTLs in 0 mM NaCl;   Detected 
QTLs in 200 mM NaCl;   Detected QTLs in 300 mM NaCl. Numbers on the bars indicate the salinity level, R indicates QTL 
detected for total root length, and S indicates QTL detected for shoot length. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Comparison of the positions of QTLs mapped for total root length and shoot length under different salinity levels in the  
L × V and OWB populations on a consensus map of barley (Marcel et al., 2007). 

Note: Bars show the positions of QTLs ± 2 cM as confidence interval;  Detected QTLs in L×V population with 0 mM NaCl (R= 

total root length and S= shoot length);  Detected QTLs in L×V population with 200 mM NaCl (R= total root length and S= 

shoot length);  Detected QTLs in L×V population with 300 mM NaCl (R= total root length and S= shoot length);  Detected 
QTLs for total root length in the OWB population under 300 mM NaCl; S Detected QTLs for shoot length in the OWB 
population with 300 mM NaCl. 
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E42M32-682 and E37M33-191) (Tables 1 and 2; 
Fig. 2). Three QTLs for root length and two QTLs 
for shoot length were detected under 200 mM NaCl 
(Fig. 2). No common QTL was detected for these 
two traits at this level of salinity (Tables 1 and 2). 
Two QTLs (one for root length and one for shoot 
length) that were detected at the top of chromosome 
4(4H) were close to each other (Fig. 2). Two QTLs 
for root length and one QTL for shoot length were 
mapped on chromosomes 5(1H) and 6(6H) under 0 
mM NaCl (Fig. 2). There was no QTL in common 
for these two traits in the two populations. 

 
DISCUSSION 

Abundance of QTLs for salt tolerance in barley 
In this study, shoot and root length, two 

important growth characteristics that can be severely 
affected by salt stress at the early growth stages of 
barley were selected. These traits were quantified in 
all individuals of two barley mapping populations at 
different salinity levels; as well as in control those 
data were used for QTL mapping. Our data showed 
that a total of 8 QTLs were involved in salt tolerance 
in the L × V population under 200 and 300 mM of 
NaCl; none of these QTLs appeared under control 
conditions and three of them were detected for both 
traits and were located close to each other on 
chromosome 4(4H). A QTL was reported by Mano 
and Takeda (1997) in the S × M population for salt 
tolerance at the seedling stage and for germination 
response to ABA; it is located on chromosome 
4(4H), about 4 cM from the position that we mapped 
in this study. Xu et al. (2012) detected one QTL in 
this region on chromosome 4(4H) that is associated 
with waterlogging tolerance at the vegetative growth 
stage. On other arm of chromosome 4(4H) a QTL 
for shoot length was mapped only in 300 mM Nacl. 
No QTL was mapped in this region under the other 
salinity levels as well as under control conditions. In 
earlier studies, one QTL for number of tillers plant-1 
in both salinity and control conditions was mapped 
in this region (Xue et al., 2009; Ellis et al., 2002; 
Huang et al., 2008). 

Studies on the subgroup Triticeae (i.e., wheat, 
barley, rye, and related species) have revealed some 
QTLs on chromosome 4 under salinity stress (see 
Genc et al., 2010; Huang et al., 2008; Dubcovsky et 
al., 1996). Forster et al. (1990) and Forster (1992) 
reported that genes for abiotic stress tolerance in the 
Triticeae were located primarily on chromosomes 4 
and 5. In this study, chromosome 4(4H) in the L × V 
mapping population was one of the major 
chromosomes that effectively control salt tolerance, 
a finding that is in agreement with earlier studies. 
However, no QTL for salt tolerance was mapped on 

chromosome 4(4H) of the OWB mapping 
population, where chromosome 2(2H) was the most 
important chromosome for salt tolerance. This 
indicates that in different mapping populations 
different chromosomes may host QTLs for abiotic 
stress, including salinity. 

Another QTL for shoot length located on 
chromosome 2(2H) of the L × V population was 
identified in our experiment under 300 mM NaCl. 
Previous studies detected QTLs in this region for 
different traits related to salt tolerance (Ellis et al., 
2002; Zhou et al., 2012; Xu et al., 2012). In the 
present study, other regions detected under 200 mM 
NaCl on chromosomes 2(2H) and 5(1H) of the L × V 
population were not found in the control or under 
300mM NaCl. Other researchers have detected QTLs 
near this region under different levels of salinity (Ellis 
et al., 2002; Siahsar and Narouei, 2010; Nguyen et 
al., 2012; Zhou et al., 2012) and under control 
conditions (Xue et al., 2009) for other traits.  

Three QTLs on chromosomes 5(1H) and 6(6H) 
were identified for morphological traits (root and 
shoot length) in the L × V population under 
controlled conditions, which were not detected under 
salt stress levels (in either the OWB or the L × V 
population) and may consist of genes that control 
seedling growth but are not related to salt tolerance. 
Xue et al. (2009) detected several QTLs on these 
chromosomes for plant height and Na+ : K+ ratio 
under control conditions, as well as several for 
spikes line-1 and grain yield in 200 mM Nacl at the 
vegetative growth stage. Other studies (Xu et al., 
2012; Zhou et al., 2012; Xue et al., 2009; Mano and 
Takeda, 1997) have detected a few QTLs for salt 
tolerance on these chromosomes but none of them 
was close to the chromosomal regions where we 
found salt tolerance QTLs. 

Our data for the OWB population were similar, to 
some extent, to the results of Witzel et al. (2010), 
who performed QTL analysis at the germination 
stage under different salt concentrations using the 
OWB mapping population (Dom × Rec) and 
identified two chromosome regions on 5H and one 
on 7H that are associated with salt stress response. 

 
Specific QTLs for different salinity levels and 
different traits 

Comparison of the locations of QTLs mapped in 
the L × V population under 200 and 300 mM NaCl 
indicated that shoot and root length are controlled by 
a set of different QTLs with minor overlapping 
specificities. If we consider seedling shoot and root 
length as indices that reflect salt tolerance, it can be 
postulated that in a specific barley genotype the 
location of QTLs depends mainly on the salinity 
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level. Therefore, when the salinity level increases, 
the position of QTLs may change. Our finding in 
this case is in agreement with previous studies. 
Foolad et al. (1999) and Monforte et al. (1997b) 
reported that the QTLs for salt tolerance that they 
identified were treatment sensitive. If we consider 
that in barley each QTL includes at least one minor 
gene for salt tolerance, one may conclude that at 
different salinity levels, different mechanisms may 
be involved. This implies that tolerant cultivars that 
have been screened under low salinity conditions 
may behave differently when exposed to higher 
levels of salt stress and vice versa. 

In the present study, different sets of QTLs were 
detected for different evaluated traits. Very few of 
these QTLs were shared between the two traits. 
Effectiveness of a QTL for both shoot and root 
length under salt stress can be due to the gene cluster 
or pleiotropic effects. Salinity can cause several 
morphological and physiological imbalances in 
growing plants. Quantifying the more representative 
trait is crucial for QTL mapping. Our data indicate 
that it would make sense to use aboveground or 
underground growth indices in barley for QTL 
mapping under salinity stress. 

 
Diversity of QTLs for salt tolerance in different 
barley populations 

Of the eight QTLs that were mapped in the 
OWB-DH population under salinity stress, five were 
located on chromosome 2(2H) and two were in the 
same position as QTLs mapped in L × V. 
Comparing the results of the L × V and OWB 
populations under 200 and 300 mM NaCl levels 
indicates that, in these two barley populations, shoot 
and root length under different salinity levels are 
controlled by sets of different QTLs with minor 
overlapping specificities. This suggests there is great 
diversity in QTLs conferring salt tolerance, and that 
the positions of these QTLs vary from one barley 
genotype to another. 

Mano and Takeda (1997) showed that different 
QTLs control salt tolerance in Harrington/TR 306 
and Steptoe/Morex under 250 and 300 mM NaCl. 
Monforte et al. (1997a) showed that the QTLs for 
salt tolerance they detected are population specific 
and that their detection in closely related populations 
may be low or even zero. In both these studies, the 
positions of QTLs were not compared on a 
consensus map. Comparing the positions of QTLs 
mapped in two different populations on a consensus 
map of barley (Fig. 3) allowed us to show that each 
barley line has a specific set of QTLs that control 
plant growth under salt stress conditions. This 
finding, however, reveals that pyramiding minor 

genes for salt tolerance is not an easy task and may 
explain, to some extent, why progress on improving 
salt tolerance has had little success. Other reasons 
for the slow progress on salt tolerance are: 

1) There is a lack of reliable and efficient 
selection methods (Xu et al., 2012). 

2) Direct selection of salt-tolerant genotypes is 
significantly influenced by environmental factors 
(Richards, 1996). 

3) Salt tolerance of plants at one stage of 
development is not always associated with tolerance 
at other stages (see Foolad, 2004). 

4) Introgression of salt tolerance genes into 
adapted cultivars is influenced mainly by the trait’s 
quantitative inheritance. 
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