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ABSTRACT
Mohammadi, M., Ghojigh, H., Khanzadeh, H., Hosseinpour, T., and Armion,M. 2016. Assessment of yield stability of
spring bread wheat genotypes in multi-environment trials under rainfed conditions of Iran using AMMI model. Crop
Breeding Journal 4, 5 and 6 (2; 1 and 2): 59-66.

Selecting bread wheat (Triticum aestivum L.) genotypes with wide adaptation across various test environments is
important for enhancing the adoption rate of newly released wheat cultivars for rainfed spring wheat growing areas
of Iran. This study analyzed the grain yield of 18 bread wheat genotypes at four dryland locations in Iran during the
2010-11, 2011-12, and 2012-2013 cropping cycles using the AMMI (additive main effects and multiplicative
interaction) model. The biplot of AMMI-1 and AMMI-2 models facilitated the visual evaluation and identification of
suitable genotypes, which is useful for genotype recommendation and mega-environment determination. Combined
analysis of variance (ANOVA) revealed significant genotype × environment interaction for bread wheat yield.
According to the AMMI-2 biplot, there were six best genotypes and five best mega-environments. The AMMI-1
model indicated that genotypes G2, G5, G9, G13, G14, G16, and G17 were superior, with moderate yield and yield
stability, based on the lowest genotype × environment interactions. Genotypes G1 and G15 performed successfully
in Khorramabad and Gonbad (two distinct mega-environments), respectively. The AMMI model was a useful tool
for identifying yield stability of spring bread wheat genotypes for rainfed spring wheat growing areas of Iran. The
significant genotype × environment interaction suggested that breeding strategies for specific adaption genotypes in
homogeneously grouped environments should be considered in the national rainfed spring bread wheat breeding
program in Iran.
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INTRODUCTION
read wheat (Triticum aestivum L.) is an
important crop worldwide, including in Iran,

due to its high levels of production and
consumption. It was estimated that global wheat
production must increase by 40% by 2020 in order
to meet the rising demand for wheat (Borlaug and
Dowswell, 1997). Wheat breeders should therefore
develop new wheat genotypes and test them for
yield performance and stability in different
environments; the success of a new wheat genotype
depends upon its adaptation in those environments
(Romagosa et al., 1996; Sabaghnia et al., 2012).
Breeding and statistical methods during the last

decades have contributed to a decrease in genotype
× environment (GE) interactions and have facilitated
the selection of genotypes with better yield stability
across a wide range of environments.

GE interaction refers to differential responses of
genotypes across a range of test environments in
multi-environment trials (METs) and is an important
issue for plant breeders. Plant breeders look for a
non-crossover type of GE interaction, or preferably
the absence of GE interaction, for wide adaptation in
yield stability analysis (Matus-Cadiz et al., 2003).
Variation in soil and climate is reflected in variation
in yield performance and yield stability of
genotypes. Evaluating genotypic performance across
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a number of environments provides useful
information for identifying adaptation and yield
stability (Kang, 2004). The GE interaction is
universal phenomenon and usually impairs the
accuracy of yield estimation and reduces the
relationship between genotypic and phenotypic
values (Nachit et al., 1992). Numerous statistical
models for MET data analysis have been developed
to expose patterns of GE interaction, such as joint
linear regression (Finlay and Wilkinson, 1963),
AMMI (additive main effects and multiplicative
interaction) model (Gauch, 2006), and the GGE
(genotype main effect plus GE interaction) biplot
(Yan et al., 2007).

While several methods for stability analysis have
been introduced, each indicates different aspects of
stability and GE interaction structure, andno single
model sufficiently explains genotype performance
across environments (Sabaghnia et al., 2006). The
AMMI model integrates combined analysis of
variance (ANOVA) with principal component
analysis (PCA) of the GE interaction in a unified
approach. Gabriel (1971) proposed that the graphic
analysis model via biplots allows visual examination
of the relationships among the test environments,
genotypes, and the GE interaction (Ortiz et al., 2001;
Gauch et al., 2008).

Kempton (1984) claimed that the AMMI model
refers to double centered PCA and is based on
singular value decomposition (SVD) and considered
to be effective tool ingraphically diagnosing GE
interaction structures (Gauch et al., 2008). Some
researchers (van Eeuwijk et al., 1996; Sabaghnia
et al., 2008) reported that this method can be used to

identify superior genotypes, in addition to selecting
favorable environments in the genotype evaluation
process. The AMMI model is a useful tool for
identifying environments that optimize genotypic
performance, therefore, making better use of limited
available resources inbreeding programs. It is
particularly useful for depicting adaptive responses
of small grain cereals (Romagosa et al., 1996;
Annicchiarico, 1997) and has been successfully used
to interpret GE interaction in wheat (Oikeh et al.,
2004; Petrovic et al., 2010; Mahmoodi et al., 2011;
Mohammadi et al., 2012; Sabaghnia et al., 2013).

This study aimed to assess the grain yield
stability of 18advanced spring bread wheat breeding
lines in 11 rainfed test environments in Iran, as well
as to interpret the GE interactions using AMMI
biplots.

MATERIALS AND METHODS
A total of 18 advanced spring bread wheat

breeding lines (Table 1) were evaluated at four
locations (Gachsaran, Gonbad, Khoramabad, and
Moghan) during the 2010-11, 2011-12, and 2012-13
cropping cycles. Details of each location
(geographic position, altitude, soil, temperature,
precipitation) are shown in tables 2 and 3. Data from
Moghan during the 2010-11 cropping cycle was
excluded due to severe drought stress, leaving data
from 11 environments (location × year
combinations) available for analysis. The
experimental layout of all the trials was a
randomized complete block design with four
replications.

Table 1. Name and pedigree of the 18 bread wheat genotypes.
Genotype

Name/PedigreeNo.
1 PASTOR/TILHI CMSS00Y01316S-030Y-030M-030WGY-16M-0Y
2 FRET2/TUKURU//FRET2 CGSS00B00158T-099TOPY-099M-099Y-099M- 9CEL-0B
3 RL6043/4*NAC//PASTOR/3/CROC_1/AE.SQUARROSA (224)// OPATA CMS S97 M03174T-040Y-020Y-030M-

040SY-020M-2Y-010M-0Y-0SY
4 PASTOR/BAV92/3/BJY/COC//PRL/BOW CMSS97M03293T-040Y-020Y-030M-040SY-020M-11Y-010M-0Y-0SY
5 BABAX//IRENA/KAUZ/3/HUITES CMSS99M01622T-040Y-040M-040Y-15M-3CVLFY-3M-0Y
6 CROC_1/AE.SQUARROSA(224)//OPATA/3/PASTOR/4/ PASTOR *2/ OPATA CMSS 98Y03432T- 040M-0100M-

040Y-020M-040SY-23M-0Y-0SY
7 CROC_1/AE.SQUARROSA (224)//OPATA/3/ ALTAR 84/ AEGILOPS SQUARROSA (TAUS)//

OPATA/4/PASTOR CMS S98Y03433T-040M-0100M-040Y-020M-040SY-12M-0Y-0SY
8 SCA/AE.SQUARROSA (409)//PASTOR/3/PASTOR CMS S99 Y03439T-040M-040Y-040M-040SY-040M-23Y-

010M-0ZTB-0SY
9 MILAN/SHA7/3/CROC_1/AE.SQUARROSA (224)//OPATA CMS S99Y00339S- 040Y-040M-040SY-040M-4Y-

010M-0ZTB-0SY
10 MILAN/SHA7/3/CROC_1/AE.SQUARROSA (224)//OPATA CMS S99Y 00339S-040Y-040M-040SY-040M-14Y-

010M-0ZTB-0SY
11 SUNCO/2*PASTOR CMSS99Y05530T-10M-040Y-040M-040SY-040M-6Y-010M-0ZTB-0SY
12 SUNCO/2*PASTOR CMSS99Y05530T-10M-040Y-040M-040SY-040M-7Y-010M-0ZTB-0SY
13 TIECHUAN 1*2/3/HE1/3*CNO79//2*SERI CMSS99 M01648F-040Y-040M-040SY-040M-040SY-15M-0ZTB-0SY
14 THELIN#2//ATTILA*2/PASTOR/3/PRL/2*PASTOR  CGSS02Y00096T-099B-099M-099Y-099M-42Y-0B
15 THELIN/3/BABAX/LR42//BABAX/4/BABAX/LR42//BABAX  CGSS02Y00083T-099B-099B-099Y-099M-48Y-0B
16 BABAX/LR42//BABAX*2/3/TUKURU CGSS01B00050T-099Y-099M-099M-099Y-099M-64Y-0B
17 WBLL1*2/BRAMBLING CGSS01B00066T-099Y-099M-099M-099Y-099M-8Y-0B
18 KOUHDASHT
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Experiments were sown from 10 December to 10
January in different locations using a Winter Steiger
planter with seeding density of 300 seed m-2.
Experimental plots consisted of six rows of 7 m long

with 17.5 cm row spacing. Chemical fertilizers were
used based on soil tests and recommendations for
each location. Weeds were also controlled using
appropriate herbicides.

Table 2. Geographical characteristics of the four test locations.

Location
Longitude
Latitude

Altitude
(m) Soil texture Soil type

Gachsaran
50º  50´  E
30º  20´ N 710 Silty Clay Loam Regosols

Gonbad
55º  12´ E
37º  16´ N 45 Silty Clay Loam Regosols

Khorramabad
48º 35´ E
33º 46´ N 1148 Silt-Loam Regosols

Moghan
47° 58´E
39° 39´N 32 Sandy-loam Cambisols

Table 3. Average rainfall and temperature for the four test locations during the 2010-11, 2011-12, and 2012-13 wheat cropping cycles.
Station Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June

Rainfall (mm)
2010-11

Gachsaran 0.0 31.3 133.1 64.4 84.1 29.0 167.3 2.0 0.0
Gonbad 30.0 63.9 63.2 10.6 35.7 148.1 65.2 25.0 15.1
Khorramabad 52.5 135.8 48.5 48.8 82.7 32.5 196.8 58.6 1.9
Moghan 21.2 16.0 12.2 7.1 8.5 22.3 41.3 15.1 30.0

2011-12
Gachsaran 0.0 0.0 53.7 105.4 23.0 1.1 0.8 0.0 0.0
Gonbad 13.3 2.4 68.2 21.8 42.8 40.8 9.8 8.9 14.3
Khorramabad 0.0 10.4 101.0 45.9 22.6 30.7 14.2 26.2 0.0
Moghan 19.5 33.7 63.1 15.1 23.5 10.6 9.5 36.9 9.0

2012-13
Gachsaran 0.0 41.6 25.9 12.0 44.1 5.9 77.4 0.0 0.0

Gonbad 19.0 33.1 53.8 20.3 112.2 18.5 80.7 27.3 15.8
Khorramabad 0.0 85.2 99.0 17.9 32.1 9.8 73.2 26.8 3.7

Moghan 47.2 19.9 15.5 19.5 4.2 17.6 21.2 12.4 15.1
Temperature (ºC)

2010-11
Gachsaran 26.2 20.5 10.7 9.1 13.3 14.2 18.4 25.4 30.0
Gonbad 23.4 17.5 7.9 9.6 9.1 10.5 14.8 22.1 26.7
Khorramabad 20.8 13.4 5.8 3.2 6.4 9.0 11.4 18.9 25.1
Moghan 19.1 12.7 5.2 3.7 7.1 6.4 10.2 16.3 25.4

2011-12
Gachsaran 26.5 17.8 14.3 8.9 10.9 15.8 21.2 26.4 30.6
Gonbad 21.6 16.5 11.2 2.7 4.9 12.9 17.7 21.4 25.0
Khorramabad 21.3 14.8 8.2 2.1 5.5 10.7 16.7 20.3 26.6
Moghan 18.1 12.0 5.3 -0.4 1.8 9.4 16.5 18.1 22.7

2012-13
Gachsaran 26.3 19.4 12.9 10.9 12.2 17.4 18.3 26.2 31.4
Gonbad 22.5 13.9 11.6 11.7 11.0 12.9 12.8 19.1 25.2
Khorramabad 21.3 13.0 6.9 5.1 7.7 10.1 11.6 17.9 25.2
Moghan 18.4 11.3 6.7 2.3 6.4 8.4 11.2 17.0 22.6

Environments were considered as random
variables while the genotypes were treated as fixed
variables. Analysis of variance was conducted using
SAS (SAS/STAT User’s Guide, 2004) to determine
the effects of genotype, environment, and GE
interactions on grain yield. The AMMI model was
used to investigate GE interactions using the
following equation:





N

n
ijjninnjiij egY

1



where ijY is the yield of the ith genotype in the

jth environment;  is the grand mean; ig and je

are the genotype and environment deviations from
the grand mean, respectively; n is the eigenvalue of

the interaction PCA (IPCA) axis n; in and jn are

the genotype and environment eigenvectors for axis
n; nis the number of principal components retained
in the model; and ij is the error term.

In addition, IPCA axes were extracted and
statistically tested using Gollob’s (1968) F-test
procedure. The first two components were used to
obtain an AMMI biplot (Burgueno et al., 2001),
which is used to interpret the AMMI model by
relating genotypic means to the first two IPCA by



Crop Breeding Journal, 2016, 4, 5 and 6 (2; 1 and 2)

62

enabling the visual presentation of the GE
interaction estimate. Biplots were drawn using
Statistica 7.0 (StatSoft, 2004).

RESULTS AND DISCUSSION
Combined ANOVA for grain yield revealed
significant GE interactions (Table 4). The main
effects of environment (E) and genotype (G) were

also significant. Grain yield was significantly
affected by E, which accounted for about 96% of the
sum of squares of E+G+GE, whereas G and GE
interaction captured 1% and 3%, respectively.
According to Yan et al. (2007), the large yield
variation in most crops is due to environment and is
the main source of variation.

While the combined ANOVA gives an overall

Table 4. Combined analysis of variance (ANOVA) and AMMI analysis for grain yield of advanced spring bread wheat lines.

S. O.V. DF Mean Squares RMSPD¶ % of GE† % of GE‡
Environment (E) 10 161572682.5**

Replication/E 33 1271585.7

Genotype (G) 17 609621.1**

GE 170 302985.5**

IPC1 26 559204.9** 506.7 28.2 28.2

IPC2 24 407300.2** 484.4 18.9 47.1

IPC3 22 406460.4** 509.1 17.4 64.6

IPC4 20 309634.9* 511.9 12.0 76.6

Residual 78 154592.9

Error 561 140808.5
¶ RMSPD, the root mean square prediction differences of cross validation
†Percentage of each IPC from GE interaction
‡ Cumulative percentage of each IPC from GE interaction
**, * and ns, respectively significant at the 0.01and 0.5 probability level and non-significant

picture of the relative magnitude of G, E, and GE
interaction variance components, the AMMI model
enables further analysis of the GE interaction.
Gollob’s (1968) F-test indicated that the first four
IPCA were significant, while the RMSPD (root
mean square prediction differences) values of the
cross validation procedure demonstrated the AMMI-
2 model as the appropriate statistical model for
describing the GE interaction (Table 4). The AMMI-
2 model, including IPC1 and IPC2, accounted for
47.1% of the GE variation of grain yield in advanced
rainfed spring bread wheat genotypes. The AMMI
model showed that there was a relatively simple
interaction of GE, which could facilitate graphical
visualization of the genotypes in low dimensions.

The abscissa of the AMMI-1biplot (Fig. 1)
indicated differences in the main effects and ordinate
differences in the GE interaction structures.
According to the AMMI-1 biplot, genotypes G2, G5,
G9, G13, G14, G16, and G17 had the lowest GE
interaction (zero or near zero), as well as moderate
mean yield (Fig. 1). All of these are favorable
candidates for wide adaptation for most of the test
environments.

According to Gauch (2006), genotypes with a flat
response show high yield stability and are adapted
(if they also possess high mean yield). In general,
the IPC1 scores divided the genotypes into two
distinct groups: group 1 (G3, G4, G5, G7, G8, G10,
and G14) and group 2 (G1, G2, G6, G9, G11, G12,

G13, G16, G17, and G18). Genotypes in each group
interact positively with the related test environment,
and interact negatively with the test environments of
the other group (Fig. 1). The IPC1 scores divided the
test environments into two main mega-environments
(ME): E2, E3, E6, E7, E9, and E10 (ME-1) with
winner genotype G1, and E1, E5, E8, and E11 (ME-
2) with winner genotypes G4 and G7. The AMMI-1
ME geometry is quite simple, involving a single
horizontal line at an IPC1 score of 0.0. The
performances of the winner genotypes of AMMI-1
biplot were relatively moderate.

The AMMI-1 biplot is simpler and easier to
visualize, and according to Gauch et al. (2008), this
biplot is comparable with the GGE biplot, as both
capture GE interaction essentially on one IPCA,
though the AMMI-1 biplot is simpler than the GGE
biplot for ME identification, genotype response
determination, and similarities among environments
in GE interaction. The AMMI-1 model is also
analogous to the joint linear regression model
(Finlay and Wilkinson, 1963), except that
environment IPC1 scores substitute for environment
means along the abscissa, while the AMMI-1 model
captures more GE interaction than the joint linear
regression model.

A simple model such as AMMI-1 is sufficient
when analyzing genotype × location interaction of
METs that are repeated in time factor
(Annicchiarico, 1997). Using simple statistical
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Fig. 1. AMMI-1 biplot for rainfed spring bread wheat multi-environmental trials. The genotype and environment means are
shown on the abscissa, with a vertical line at the grand mean of 3000 kg ha–1. Interaction principal component 1 (IPC 1) scores
are shown on the ordinate, with a horizontal line at 0.

models and fewer ME may result in the benefit of
greater gains from specific adaptation and the
disadvantage of less data.

Some corner genotypes (i.e. the most responsive
ones) can be visually identified on the AMMI-2
biplot. These are either the best or the poorest
genotypes at some or all test environments and can
be used for identifying ME. The corner genotypes
for the rainfed spring bread wheat dataset were G4,

G7, G15, G12, G1, and G16 (Fig. 2). By connecting
corner genotypes, a special polygon is generated;
perpendiculars to each side of this polygon and the
plot origin then divides the test environments into
various sectors, each with a different vertex
genotype.

In Figure. 2, the test environments are divided
between five sectors. The first sector contains test
environment E1 with genotype G4 the winner. The

Fig. 2. AMMI-2 biplot for rainfed spring bread wheat multi-environmental trials. Interaction principal component 1 (IPC 1)
scores are shown on the abscissa. IPC 2 scores are shown on the ordinate, with a horizontal line at 0.
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test environment E11 makes up the second sector
with genotype G7 the winner (Fig. 2). The third
sector contains test environments E3, E7, E8, and
E9, with genotype G15 the winner. The fourth sector
contains test environments E4, E6, and E10 with
genotype G1 the winner. The other test
environments (E2 and E5) make up the fifth sector,
with genotype G16 the winner (Fig. 2). If the ME
concept is explained by different winning genotypes
(Gauch and Zobel, 1997), Fig. 2 would identify five
ME for rainfed spring bread wheat in Iran. However,
such a subdivision should be regarded a proposal as
it is based solely on one MET dataset and must be
further verified using other similar datasets.

Of the four locations, Khorramabad and Gonbad
could be regarded as distinct ME, while Gachsaran
and Moghan could not be regarded as such due to
variable responses over different years. Genotype
G1 was the best performing genotype for
Khoramabad and genotype G15 was the best
performing genotypeat Gonbad.

The gain factor of the AMMI-2 model for the
rainfed spring bread wheat METs was 2.19, thoughit
usually obtains a statistical efficiency of 1.5-4.0
(Gauch and Zobel, 1996).  Ebdon and Gauch (2002)
reported an exceptional statistical efficiency of 5.6
for the AMMI-2 model for rye grass METs.
Winning genotypes and ME identified by the
AMMI-2 model are also more reliable over years.
The yield and its stability aspects are graphically
depicted by the abscissa and ordinate of the biplot.
Moreover, the biplot technique can be applied to
balanced subsets extracted from multiple years of
trials.

Newly improved genotypes require testing at
multiple environments before they can be
recommended for a given region and thus breeding
programs have to manage recurring GE interactions.
The GE interaction is as much a function of the
environmental factors as a function of the
morphological and physiological characters of the
genotypes (Nachit et al., 1992). New developments
in plant physiology, statistics, and some integrated
models have enabled the study of GE interaction.
However, it seems that the AMMI model is more
efficient than most statistical procedures. It is
superior to conventional stability procedures and to
avoid unnecessary analyses, there is no call for a
mix-and-match strategy using AMMI model (Gauch
et al., 2008). Among singular value decomposition-
based models, AMMI is the analysis that separates
G, E, and GE interaction as needed for most
breeding goals. The AMMI model also separates
signal from noise as well as any other method for the
purpose of gaining accuracy.

CONCLUSIONS
Selection of genotypes for high yield and yield

stability is an important component of any wheat
breeding program in arid and semi-arid
environments, where the environment is variable and
unpredictable. According to this study, the superior
genotypes were G2, G5, G9, G13, G14, G16, and
G17, which had moderate yield and high yield
stability based on the lowest GE interaction. These
genotypes were more suitable for use in crossing
block for warm dryland regions. Six winning
genotypes and five mega-environments were
identified according to the AMMI-2 model biplot.
Genotype G1 was the best performing genotype in
Khorramabad (one ME), while genotype G15 was
the superior genotype at Gonbad (another ME). The
AMMI model was a useful tool for identifying the
yield stability of rainfed spring bread wheat
genotypes. The significant GE interaction suggested
that a breeding strategy for specific adaption
genotypes in homogeneously grouped environments
should be considered in the national rainfed spring
bread wheat breeding program in Iran.
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