Compensatory growth, proximate composition and amino acid contents after experiencing cycles of feed deprivation and re-feeding in young yellow catfish (*Pelteobagrus fulvidraco* R.)

Ruan G.¹; Wan Q.²; Yao F.³; Yang Y.^{2*}; Zhang J.²; Huang L.²

Received: September 2012

Accepted: February 2013

Abstract

The compensatory growth, proximate composition and amino acid contents changes of young yellow catfish (Pelteobagrus fulvidraco R.) (1.63-1.69 g) had been investigated using a 45-day cyclic feed deprivation and re-feeding experiment. The control group (S_0) was fed daily with live tubificid worms (*Limnodrilus hoffmeisteri*), while the $S_{1/4}$, $S_{1/2}$, and $S_{1/1}$ groups cyclically experienced one-day of feed deprivation followed by four, two or one day(s) of feeding, respectively. Over- or full-compensatory growth was achieved in the cyclic deprivation/re-feeding groups through increased feeding rate (FR) and feed conversion efficiency (FCE). However, the fish behaved different courses of growth compensation, the compensatory growth responses of fish subjected to a weaker intensity of feed deprivation (i.e., $S_{1/4}$) compared with more intense deprivation (i.e., $S_{1/1}$) was achieved in these groups mainly by a gradual increases in FR or by maintaining a high FCE, respectively. The cyclic deprivation/re-feeding schedules did not affect the proximate composition of the fish body, however, the amino acid parameters were inversely related to the specific growth rate, the fish showing growth over-compensation contained significantly lower contents of total amino acids, essential and non-essential amino acids.

Keywords: Amino acid, Compensatory growth, Over compensation, Feed conversion efficiency, Feeding rate, Proximate composition, Yellow catfish

¹⁻Engineering Research Center of Wetland Agriculture in the Middle Reaches of the Yangtze River, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, Hubei Province, 434025, China.

²⁻College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, China.

³⁻Economics Department West Virginia University Morgantown, WV 26505, USA Corresponding author's email: yangyanou@126.com

Introduction

Compensatory growth is commonly described as a phase of unusually accelerated growth vertebrates in (including mammals, birds and fish) following a period of malnutrition (e.g., reduced feeding) or some unfavorable environmental conditions (Ali et al., 2003; Li et al., 2009). In fish, partial or total feed deprivation may induce growth compensation to different (partial, fullor extents overcompensation) by hyperphagia, increases feed conversion in efficiencies or behavioral adjustments (e.g., reduced locomotion) (Ali et al., degree 2003). The of growth compensation in fish is highly variable depending on the species and feeding protocols used, including the duration and intensity of feeding regimens (Oh and Noh, 2007; Oh et al., 2008). Therefore. it is necessary to characterize appropriate feeding regimens that achieve compensatory growth for a specific fish species before practical application to aquaculture, as exploitation appropriate of compensatory growth can result in enhanced growth and feed utilization that ultimately would lead to reductions in feed costs. In addition. the application of this phenomenon could improve husbandry efficiency, water quality and reduce labour costs (Eroldoğan et al., 2006a).

Different experimental designs have been used to investigate compensatory growth. The first type of design is a single phase of food deprivation/refeeding (Bélanger et al., 2002; Wang et al., 2004; Tian and Qin. 2004; Oh et al..2008), which focuses on the impact of starvation time on compensatory growth, or investigates the time course of changes in fish growth rate. Second and more commonly, there is cyclic starvation/re-feeding, which has been applied to induce compensatory growth in several species (Quinton and Blake.,1990; Feng and Qin, 2006; Heide et al., 2006). In this approach, the capacity for compensatory growth is weakened gradually during the refeeding period of the cycle, but can be reactivated in the next cycle of starvation/re-feeding. Thus. this approach is effective for constantly enhancing potential the for compensatory growth, which increases the duration of compensatory growth, and thus the animals attain improved growth (Hayward et al., 1997; Feng and Qin, 2006). In cyclic regimens, the growth compensatory effect is related to the time interval between starvation and re-feeding, and the ratio of starvation to re-feeding (Ouinton and Blake, 1990; Feng and Oin, 2006; Heide et al., 2006). However, prolonged starvation, which is the most extreme form of malnutrition, can cause serious impairment of physiological functions in fish (e.g., metabolic decline and oxidative stress), especially during juvenile stages (Tripathi and Verma, 2003; Morales et al., 2004). Thus, in this present study the length of feed deprivation is shorter than that of refeeding, which may be more realistic for seedling cultivation.

The yellow catfish P. fulvidraco, is an economically and nutritionally important freshwater species that is distributed and cultured in Southeast Asian countries, especially in China (Cao et al., 2009; Liu et al., 2010). To the best of our knowledge, the effects of cycles of fixed lengths of feed deprivation followed by different lengths of feeding ad libitum have yet to be investigated during the seedling stages of P. fulvidraco cultivation. In addition, in different cyclic starvation/re-feeding regimens, although the effects body on composition have been investigated for some species (Zhu et al., 2004; Heide et al., 2006; Mattila et al., 2009), little information has been reported regarding changes in the amino acid contents of the fish body.

The purpose of this present study was to investigate the capacity of young vellow catfish for growth compensation during cyclic feeding regimens with different periods of re-feeding, and to examine the effects on body composition and amino acid contents. Furthermore, the contributions of hyperphagia and/or feed conversion efficiency compensatory to any responses were evaluated.

Materials and methods

Fish and experimental conditions

Young fish of 1.63-1.69 g were obtained from Fisheries Research Institute of Jingzhou, Hubei, China. The fish were transferred to the laboratory and randomly assigned to 12 aerated fiberglass tanks (70 cm×55 cm×36 cm) of the circulating water system in natural light conditions. Prior to the experiment, the fish were reared for 2 weeks and fed daily to apparent satiation. During the acclimation and the experiment, the live tubificid worms (L. hoffmeisteri) was used as the diet for the fish. During the experiment, aeration maintained the dissolved oxygen above 6.2 mg/L and the ammonia nitrogen below 0.09 mg/L, the pH ranged from 6.7 to 7.4. Water temperature controlled was at 25.0±1.0°C by air conditioning.

Experimental design and procedures

At the start of the experiment, the 12 tanks were divided into 4 groups and 3 tanks were assigned to each treatment, each tank contained 30 fish. Specifically, The $S_{1/4}$, $S_{1/2}$, and $S_{1/1}$ group cyclically experienced one-day of feed deprivation followed by four, two or one day(s) of re-feeding at *ad libitum* ration, respectively, and the control group (S₀) was fed daily to satiation.

Before the experiment, all fish were deprived of food for one day and weighed. During the feeding days, a certain amount of live tubificid worms was weighed and then fed to the fish, any uneaten feed was siphoned off from the tanks at the next morning. The experiment lasted for 45 days (except for the $S_{1/1}$ group, which lasted for 44 days). The total time of actual feeding in the S_0 , $S_{1/4}$, $S_{1/2}$ and $S_{1/1}$ groups were 45 d, 36 d, 30 d and 22 d, respectively. To calculate feed intake in each tank for

each day, the uneaten food was blotted dry, weighed and calibrated according to the leaching rate of the live tubificid worms. Three samples of food were put into three fish-free tanks, re-collected after 24 h, dried and weighed, and then the leaching rate was determined.

At 15th day, 30th day and the end of the experiment, all tanks of fish were individually weighed and the mean weights of fish were calculated. To determine the initial body composition of fish at the start of the experiment, a batch of 30 fish were dried to constant weight at 70°C. It was performed in and triplicate mean values were calculated. At the end of the experiment, all fish in each tank were deprived of food for one day, weighed, and then dried to constant weight at 70°C to determine dry weight, body composition and amino acid contents.

Chemical analyses

Dry matter was determined for fish and diet samples (in triplicate) by drying to constant weight at 105°C. Nitrogen content was analyzed for the fish and the diet using an elemental analyzer (Perkin Elmer 2400, Perkin-Elmer Corporation, Connecticut, U.S.A.). while crude protein content was calculated from nitrogen content by multiplying by 6.25. Crude lipid was determined for fish by ether extraction using a Soxtec System (Soxtec system HT6, Tecator, Hoganas, Sweden), and energy for fish and diet using a bomb calorimeter (Phillipson microbomb calorimeter, Gentry Instruments Inc.,

Aiken, U.S.A.) according to the method of Luo *et al.* (2005). The contents of amino acids were determined on the two sub-samples from each group of fish in the triplicate groups after acid hydrolysis using an automatic amino acid analyzer (Hitachi835-50, Tokyo, Japan) equipped with a custom ion exchange resin column (Hitachi no. 2619). Due to that it could not be detected after acid hydrolysis, tryptophan was not estimated.

Calculation and statistical analyses

Wet weight specific growth rates (SGR_W) , mean feeding rates (FR), actual feeding rates (Act.FR) and feed conversion efficiencies (FCE) were calculated as follows: $SGR_W = 100(\text{Ln}W_t - \text{Ln}W_o)/t$, where W_t and W_o were fish body wet weight (g) at the start and end of the experimental period respectively, and t was the intervening period in days; $FR=200I_{Td}/t \times (W_t+W_o)$, where I_{Td} was the amount of food consumption (dry weight) during the experimental period; Act.FR=200 $I_{Td}/T \times (W_t+W_o)$, where T days of feeding; was actual $FCE = 100(W_t - W_o)/I_{Td}$.

Statistical analyses were performed using Statistica Version 5.0 in Windows. All data were expressed as means \pm standard deviation (SD), and were compared by one-way analysis of variance. Multiple comparisons (Duncan's procedure) were performed to evaluate the significance of any differences between different feeding regimens or between different stages of the experiment.

Results

Growth

At the start of the experiment, there were no significant differences in the wet weights of fish in each of the groups (p>0.05). At 15^{th} day, the mean wet weights of fish in the three cyclic deprivation/re-feeding groups were lower than the control, and this difference was significant for the $S_{1/2}$ and $S_{1/1}$ groups when compared to the S_0 (p<0.05). At 30^{th} day, the mean wet

weight of fish in each cyclic deprivation/re-feeding group was not different from that of the control (p>0.05), which indicated that full growth compensation had occurred by this time. At the end of the experiment, there was no significant difference in mean wet weight between the $S_{1/1}$ and S_0 control groups (p>0.05), but the $S_{1/4}$ and $S_{1/2}$ groups had significantly greater mean wet weights compared with the control (p < 0.05) indicating that the S_{1/4} groups showed and $S_{1/2}$ overcompensatory growth (Table 1).

Table 1: Initial and final wet body weights and SGR_W of yellow catfish experiencing different feeding regimens (means \pm SD).

Parameter	Time or periods	Feeding regimen ^a				
		So	S1/4	S _{1/2}	S1/1	
Wet body weight	initial	1.63±0.03	1.67±0.03	1.67±0.05	1.69±0.05	
	15 d	2.13±0.03ª	2.07 ± 0.08^{ab}	1.92 ± 0.09^{b}	1.96 ± 0.08^{b}	
	30 d	2.50 ± 0.09	2.64±0.11	2.51 ± 0.08	2.48±0.18	
	45 d	2.66±0.03ª	3.02 ± 0.12^{b}	2.94 ± 0.12^{b}	2.86±0.23ª	
SGR _W	0–15 d	$1.65 \pm 0.12^{X a}$	1.41±0.24 ^X a	0.92 ± 0.12^{b}	0.89 ± 0.15^{b}	
	16–30 d	$0.69 \pm 0.15^{ m Y}$	$0.94 \pm 0.10^{ m Y}$	1.04 ± 0.17	0.86±0.13	
	31–45 d	$0.57 \pm 0.09^{Y a}$	$0.87 \pm 0.13^{Y b}$	1.04 ± 0.19^{b}	1.03 ± 0.14^{b}	
	0–45 d	0.97 ± 0.05	1.07±0.17	1.01 ± 0.15	0.93 ± 0.05	

^aLetters after each value indicates the results of pair-wise comparisons. Different superscript uppercase letters (X, Y) indicate significant differences between different experimental stages (p<0.05), different lower-case letters (a, b) indicate significant differences between groups experiencing different feeding regimens (p<0.05).

During the first stage (0–15 days) of the experiment, the SGR_W of the control group was significantly greater than the S_{1/2} and S_{1/1} groups (p<0.05), and slightly higher than the S_{1/4} group (p>0.05). During the second stage (16–30 days), the SGR_W did not differ among fish of the four experimental groups (p>0.05). During the third stage (31–45 days), the SGR_W of fish in the control was significantly lower than that in the treatment groups (p<0.05),

but there were no significant difference in SGR_W between each of treatment groups. However, during the entire experiment, there were no significant differences in SGR_W between each of the four groups (p>0.05). In addition, as the experiment progressed, fish of the S₀ and S_{1/4} groups exhibited significant reductions in SGR_W (p<0.05), but there was no significant difference in SGR_W between the S_{1/2} and S_{1/1} groups (p>0.05) during the different stages of the experiment (Table 1).

Feed utilization

As shown in Table 2, the fish of the groups three treatment exhibited significantly lower mean FR values compared with the fish of the control during each of stages (p < 0.05), the Act.FR of the treatment groups were significantly greater than that of the control in the first (0-15 days) and the second (16-30 days) stages of the experiment (p < 0.05). The mean FR of treatment groups decreased the significantly with elongation of the feed

deprivation period (p < 0.05). During the entire experiment, the mean FR of the significantly control was greater compared to the other groups (p < 0.05), but the inverse was the case for the values (p < 0.05). As Act.FR the experiment progressed, the mean FR and Act.FR increased significantly in the S₀ and S_{1/4} groups (p < 0.05), but there were no significant differences between each of the experimental stages for the mean FR and Act.FR values in the $S_{1/1}$ or $S_{1/2}$ groups (*p*>0.05).

Table 2: Mean *FR*, *Act.FR* and *FCE* in yellow catfish experiencing different feeding regimens (mean \pm SD).

Donomotor	Dominda	Feeding regimen ^a				
rarameter	rerious	So	S1/4	S1/2	S1/1	
Mean <i>FR</i> (%/d)	0-15 d	2.94±0.12 ^X a	2.49±0.07 ^{х ь}	2.18±0.11°	1.87±0.13 ^d	
	16-30d	3.04±0.09 ^X a	2.68±0.03 ^{Y b}	2.22±0.05°	1.83 ± 0.08^{d}	
	31-45d	3.29±0.07 ^Y a	2.92±0.07 ^{Z b}	2.18±0.03°	1.83 ± 0.09^{d}	
	0-45 d	3.06±0.06 ^a	2.70±0.04 ^b	2.21±0.07°	1.85 ± 0.07^{d}	
<i>Act.FR</i> (%/d)	0-15 d	2.94±0.12 ^X a	3.11±0.09 ^X a	3.27±0.17 ^{ab}	3.50±0.11 ^b	
	16-30d	3.04±0.09 ^X a	3.33±0.13 ^{Y b}	3.40 ± 0.08^{b}	3.51 ± 0.14^{b}	
	31-45d	3.29±0.07 ^Y a	3.65±0.09 ^{Z b}	3.28 ± 005^{a}	3.43 ± 0.57^{ab}	
	0-45 d	3.06 ± 0.06^{a}	3.36±013 ^b	3.31±0.11 ^b	3.48±0.16 ^b	
FCE (%)	0-15 d	58.96±4.01 ^X a	56.72 ± 3.66^{Xa}	45.97±3.44 ^{х ь}	51.67±6.77 ^{ab}	
	16-30d	43.14±1.27 ^{Y a}	52.80±5.67 ^{X b}	60.04±1.95 ^{Y c}	52.68 ± 4.40^{b}	
	31-45d	31.03±5.53 ^Z a	37.33±0.81 ^{Y b}	47.50±2.47 ^X °	55.13±4.75 ^d	
	0-45 d	44.40±2.32ª	49.00±1.50 ^b	51.18±1.52 ^b	53.20 ± 2.44^{b}	

^aLetters after each value indicates the results of pair-wise comparisons. Different superscript uppercase letters (X, Y) indicate significant differences between different experimental stages (p<0.05), different lower-case letters (a, b) indicate significant differences between groups experiencing different feeding regimens (p<0.05).

In the first and second stages of the experiment, there were no obvious changes in *FCE* with increasing duration of feed deprivation. However, in the third stage, the *FCE* was significantly greater in the groups with the longer periods of feed deprivation (p<0.05). During the entire experiment, the *FCE* values of the three treatment

groups were significantly greater than the control group (p<0.05). The *FCE* between the treatment groups did not differ significantly but exhibited an increasing trend with the longer periods of feed deprivation. As the experiment progressed, the *FCE* deceased significantly in the S₀ and S_{1/4} groups (p<0.05). In the S_{1/2} group the *FCE* increased during the early experimental stages but then decreased, while in the $S_{1/1}$ group the *FCE* did not change significantly during any experimental stages (*p*>0.05) (Table 2).

Proximate composition and amino acid contents

At the end of the experiment, there were no significant differences in dry matter, lipid, protein concentrations or energy values among the fish of the four groups (p>0.05) (Table 3). However, the concentrations of 15 amino acids were significantly lower in

the $S_{1/4}$ and $S_{1/2}$ groups compared with the $S_{1/1}$ and control groups (p < 0.05), and only valine and cysteine concentrations did not differ between the groups (p>0.05). Moreover, the concentrations of total essential amino acids (EAA), total non-essential amino acids (NEAA) and total amino acids (AA) were greater in the $S_{1/4}$ and $S_{1/2}$ groups than those in the $S_{1/1}$ and control (*p*<0.05). No significant groups differences in any of the amino acid parameters were detected between the $S_{1/4}$ and $S_{1/2}$ groups, or between the $S_{1/1}$ and control groups (Table 4).

Table 3: Body composition and energy per unit wet weight of yellow catfish experiencing different feeding regimens (mean ± SD).

Feeding regimen	Dry matter (%)	Protein (%)	Lipid (%)	Energy (J/mg)
Initial	14.62±0.98	8.76±0.42	2.39±0.18	3.24±0.30
\mathbf{S}_0	26.60±2.39	17.17 ± 1.48	5.85 ± 0.88	6.15±0.58
${f S}_{1/4}$	26.13±0.89	16.37±0.64	5.86±0.10	6.08±0.35
${\bf S}_{1/2}$	25.85±1.79	16.73±1.05	5.99±0.83	6.22±0.57
${f S}_{1/1}$	27.04±1.16	17.02±0.75	6.17±0.61	6.34±0.15

Table 4: Amino acid content per unit wet weight of yellow catfish experiencing different feeding regimens (mean ± S.D.)

A mino ooid	Feeding regimen ^a					
Amino aciu	So	S1/4	S _{1/2}	S1/1		
Thr	0.70±0.01ab	0.68±0.01b	0.66±0.00c	0.70±0.00a		
Val	0.85±0.03	0.84 ± 0.02	0.82 ± 0.04	0.85±0.03		
Met	0.44±0.01a	0.41±0.01b	0.41±0.01b	0.43±0.01a		
Ile	0.76±0.01a	0.73±0.01b	0.72±0.02b	0.75±0.02ab		
Leu	1.37±0.02a	1.33±0.01b	1.30±0.02b	1.36±0.01a		
Phe	0.73±0.01a	0.70±0.01b	0.70±0.01b	0.72±0.01a		
Lys	1.39±0.02a	1.34±0.02b	1.31±0.02b	1.37±0.02a		
His	0.40 ± 0.00	0.39±0.01	0.38 ± 0.01	0.40 ± 0.01		
Arg	1.08±0.01a	1.03±0.01b	1.01±0.02b	1.06±0.01a		
ΣEAA	7.72±0.08a	7.45±0.09b	7.32±0.14b	7.65±0.10a		
Asp	1.49±0.02a	1.40±0.01b	1.43±0.02b	1.47±0.01a		
Ser	1.06±0.01a	0.99±0.01b	1.01±0.02b	1.04±0.01a		
Glu	2.45±0.04a	2.33±0.04b	2.37±0.03b	2.45±0.02a		
Gly	1.26±0.02a	1.17±0.02b	1.20±0.02b	1.25±0.01a		
Ala	1.13±0.02a	1.08±0.03b	1.10±0.01b	1.14±0.02a		
Cys	0.11±0.02	0.11±0.01	0.12 ± 0.00	0.12±0.01		
Tyr	0.55±0.01a	0.52±0.00b	0.53±0.01b	0.54±0.00a		
Pro	0.80±0.01a	0.73±0.01b	0.76±0.03ab	0.78±0.02a		
Σ NEAA	8.86±0.12a	8.34±0.09b	8.51±0.10b	8.78±0.06a		
ΣAA	16.58±0.24a	15.97±0.16b	15.66±0.23b	16.44±0.13a		

^aLower-case letters after each value indicates the results of pair-wise comparisons. Different letters (a, b) indicate significant differences between groups experiencing different feeding regimens (p<0.05).

Discussion

Yellow catfish is a small-sized fish and displays a relatively slow growth (Li et al., 2006; Ye et al., 2006; Cao et al., 2009). Naturally, 1-year-old and 2-yearold yellow catfish can only grow to 25~50 g and 50~120 g, respectively (Li, 2010). During the whole period of this study, SGRs of 4 groups ranged from 0.93 to 1.07 (Table 1). In the similar rearing conditions, the SGRs of yellow catfish with initial weights of 3.2 g and 5.1 g were 0.9~1.95 and 0.71~0.98 respectively (Chen et al., 2010; Tang et al., 2011). Moreover, for the darkbarbel catfish, Pelteobagrus vachelli, another species of Pelteobagrus with faster growth than the vellow catfish (Gan et al., 2008), the SGR (1.0 g of initial weight) was still 1.12~1.27 (Yang et al., 2011). So, the growth in this study was within the normal range of the species.

At the end of the experiment, the cyclic feeding groups exhibited over $(S_{1/4} \text{ and } S_{1/2})$ or full $(S_{1/1})$ growth compensation compared to the control. Despite not statistically significant, the $S_{1/1}$ group showed greater weight gain than the control indicating that over growth compensation was approached in this group. Similarly, in cyclic deprivation/re-feeding practices, full and over growth compensation has been obtained in some other species, such as fingerling of channel catfish Ictalurus punctatus (Chatakondi and Yant, 2001), young or juvenile three-spined stickleback Gasteosteus aculeatus (Wu et al., 2002; Wu et al., 2003) and juvenile Lepomis hybrids (Hayward et al., 1997). Additionally, rainbow trout Oncorhynchus mykiss juveniles that experienced two or four days of fasting. followed by re-feeding until the relative feed intake differed by less than 10% of the fed controls, obtained full growth compensation (Nikki et al., 2004). However, Only partial growth compensation has been found in most of previous studies (Zhu et al., 2004; Eroldoğan et al., 2006a; Heide et al., 2006; Turano et al., 2007; Mattila et al., 2009; Wang et al., 2009; Blanquet and Oliva-Teles, 2010). So, the extent of compensatory growth obtained may be mainly correlative with the specific intermittent feeding schedules and the whole experimental durations. With the progression of this experiment, the deprived fish gradually exhibited fullor over- growth compensation in the later stages, which was indicated by the improved body masses and higher SGR compared to the controls. So, sufficient cultural period and cycles of deprivation/re-feeding, which by deprived fish can continuously undergo growth compensation, are necessary for the fish to converge on the growth trajectory of the controls (Heide et al., 2006).

The elicitation and achievement of full- and over-compensation in this present study may be due to the young stage of life, short-term (one day) of feed deprivation, and sufficient refeeding periods, which could allow the final body weight of the deprived young yellow catfish to catch up with that of the control. Hayward and Wang (2001) concluded that younger fish may demonstrate a more vigorous and resilient compensatory growth response than the older fish. Indeed, our previous study revealed that yellow catfish exhibited fulllarvae or overcompensation growth in different cyclic deprivation/re-feeding schedules of (Yao et al., 2009). In order to induce a compensatory growth response caused by sufficient nutrional stress, compared to the bigger fish, just through less prolonged durations of food deprivation could smaller fish achieve a desirable growth compensation (Foss et al., 2009), since that smaller fish may be weaker in resistance against long-term starvation stress (Tripathi and Verma, 2003; Morales et al., 2004). On the other hand, some researchers have suggested that the reason for that fish do not always achieve fullcompensation is that re-feeding periods are insufficient to regain lost weight completely (Zhu et al., 2004; Heide et al., 2006; Foss et al., 2009). The experiments have revealed that weight gains of juvenile turbot Scophthalmus maximus (Blanquet and Oliva-Teles, a cyclic 2010) in 1-day feed deprivation/6-days re-feeding regimen, and juvenile whitefish Coregonus lavaretus cyclic 2-days in a deprivation/5-days re-feeding regimen (Känkänen and Pirhonen, 2009), were not significantly less than those of the controls. From the above researches, it seems that appropriate period of feed deprivation and sufficient duration of re-feeding are very important for young fish to display full- or over- growth

compensation.

Hyperphagia, improved FCE, or sometimes a combination of both processes underlie the compensatory growth responses in fish (Eroldoğan et al., 2006a; Heide et al., 2006; Wang et al., 2009). In this study, the higher Act.FR and FCE of the cyclic feeding groups indicated that full- or overgrowth compensation was achieved in deprived fish through both hyperphagia and improved FCE. Other fish species fed with cyclic schedules of feed deprivation and re-feeding also show compensatory growth that is due to both increased hyperphagia and FCE. including hybrid sunfish (Hayward et al., 1997), channel catfish (Chatakondi 2001). and Yant, three-spined stickleback (Wu et al., 2003), Pacific salmon Oncorhynchus spp. (Feng and Qin, 2006) and the Atlantic halibut Hippoglossus hippoglossus (Heide et al., 2006). Thus, the combination of increased FR and FCE may be an important mechanism underlying compensatory growth in fish.

Few studies have investigated the temporal dynamics of appetite and *FCE* during the course of intermittent feeding schedules, although a similar experimental schedule (6 weeks of cyclic feeding regimens) has been done with whitefish, *C. lavaretus* (Känkänen and Pirhonen, 2009). In this present study, during the initial experimental stage, the $S_{1/4}$ group had lower *Act.FR* and higher *FCE* than the $S_{1/2}$ or $S_{1/1}$ groups, but with the progression of the experiment the *Act.FR* increased and the *FCE* decreased in the $S_{1/4}$ group,

respectively. The change trends of *FR* and *FCE* in $S_{1/4}$ group were similar to those in the control group, but opposite to those in the $S_{1/1}$ group, in which the fish was subjected to more intense feed deprivation. Therefore, the processes and tendencies of growth compensation had been adequately reflected in the 45 days of experimental period. As the experiment progressed, the compensatory growth responses in $S_{1/4}$ and $S_{1/1}$ groups may have been achieved

through gradual improvements of FR and consistent high FCE, respectively. Thus. it can be inferred that improvement in FCE is the main contributory factor for compensatory growth in response to relatively intense cyclic food deprivation. This suggestion is supported to some extent by the data from channel catfish fingerlings (Chatakondi and Yant, 2001) and gilthead seabream juveniles (Eroldoğan et al., 2006b).

Table 5: Coefficients of the regression equation relating AA, EAA and NEAA concentrations to specific growth rate of wet weight in young yellow catfish^a.

Y	N ^b	a	b	\mathbb{R}^2	Р
ΣAA	12	18.21	-1.94	0.46	p=0.016<0.05
ΣEAA	12	8.44	-0.90	0.37	p=0.034<0.05
Σ NEAA	12	9.77	-1.05	0.40	p=0.028<0.05

^aRegression equations were expressed as Y=a+bW, where W was the specific growth rate of wet body weight of fish; ^bN was the number of fish samples.

Figure 1: Relationship between (a) AA, (b) EAA and (c) NEAA and *SGRw* of yellow catfish in different experimental stages. Each point represents a repeated calculated value of *SGRw*.

The proximate compositions of the fish in the cyclic deprivation/re-feeding groups were similar to that in the control at the end of the experiment. For many fish species, Chemical compositions unaffected are by deprivation/re-feeding strategies for many (Zhu et al., 2004; Cho et al., 2006; Heide et al., 2006; Oh et al., 2008; Tian et al., 2010). This indicates that a short-term starvation followed by various lengths of re-feeding does not affect the body composition of the young yellow catfish, and subsequent application of cyclic feeding strategies do not negatively affect overall body

composition of the seed nursery. However, the total AA, EAA and NEAA concentrations of the groups exhibiting over-compensatory growth were lower than those of the group exhibiting full-compensatory growth and the control. Huang et al. (2007) showed that different starvation/refeeding periods did not significantly affect the AA concentrations of yellow catfish juveniles. This discrepancy may be due to the differences in the fish sizes and feeding schedules. In this study, further analysis suggested that the total AA, EAA and NEAA concentrations correlated inversely and

significantly with SGR_W (Table 5, Fig. 1). Thus, the lower amino acid parameters in the S_{1/4} and S_{1/2} groups may be attributed to slightly lower protein retention (Table 3) caused by marginally greater SGR_W during the entire experiment.

In conclusion. over growth compensation was elicited by cyclic feeding schedules that incorporated a short-term period of feed deprivation. Growth compensation was achieved through hyperphagia and improved FCE, but the improvement in FCE greater role played a in the compensatory growth responses of fish subjected to more severe feed deprivation. The results of this present study could be used to design feeding schedules that decrease feed costs and improve growth rates in vellow catfish seedling cultivation practices, although AA concentrations decreased in fish displaying over-compensation. However, there remain some challenges before the over- or full-compensation phenomena can be applied completely in aquaculture, and further studies the should explore long-term physiological effects of cyclic feed deprivation and confirm the economic benefits in field experiments.

Acknowledgements

This study was supported by The International Science & Technology Cooperation Program of China (2011DFG33280), The Major Science and Technology Program for Water Pollution Control and Treatment of Lake Chaohu (2012ZX07103003-02-02 and The Natural Science Foundation Project, Department of Education, Hubei Province (D200512007). The authors also thank an anonymous referee for his helpful comments on an earlier version of the manuscript and Prof. Liu Yanxiu for her help in improving English.

References

- Ali, M., Nicieza, A. and Wootton, R.J., 2003. Compensatory growth in fishes: a response to growth depression. *Fish and Fisheries*, 4, 147–190.
- Bélanger, F., Blier, P.U. and Dutil, J.D., 2002. Digestive capacity and compensatory growth in Atlantic cod (*Gadus morhua*). Fish Physiology and Biochemistry, 26, 121–128.
- Blanquet, I. and Oliva-Teles, A., 2010. Effect of feed restriction on the growth performance of turbot (*Scophthalmus maximus* L.) juveniles under commercial rearing conditions. *Aquaculture Research*, 41, 1255–1260.
- Cao, L., Song, B.Y., Zha, J.M., Yang, C.T., Gong, X.F., Li, J.B. and Wang, W.M., 2009. Age composition, growth, and reproductive biology of yellow catfish (Peltobagrus fulvidraco, Bagridae) in Ce Lake of Hubei Province. Central China. Environmental Biology of Fishes, 86, 75-88.
- Chatakondi, N.G. and Yant, R.D.,

2001. Application of compensatory growth to enhance production in channel catfish *Ictalurus punctatus*. *Journal of the World Aquaculture Society*, 32, 278–285.

- Chen, C., Xiong, J., Zuo, Y.S., Ma, X.R., Liu, Q., Tan, Q.S. and Yang, R.B., 2010. Effects of vitamin E levels on growth performance and immune function of juvenile *Pelteobagrus* fulvidraco. Journal of Fishery Sciences of China, 17, 521–526.
- Cho, S.H., Lee, S.M., Park, B.H. and Ji, S.C., 2006. Compensatory growth of juvenile olive flounder, *Paralichthys olivaceus* L., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. *Journal of the World Aquaculture Society*, 37, 168–174.
- Eroldoğan, O.T., Kumlu, M., Kiris, G.A. and Sezer, B., 2006a. Compensatory growth response of *Sparus aurata* following different starvation and refeeding protocols. *Aquaculture Nutrition*, 12, 203– 210.
- Eroldoğan, O.T., Kumlu, M. and Sezer, B., 2006b. Effects of starvation and re-alimentation periods on growth performance and hyperphagic response of *Sparus aurata. Aquaculture Research*, 37, 535–537.
- Feng, J. and Qin, Z.B., 2006. Compensatory growth after experiencing cycles of feed deprivation and re-feeding in

pacific salmon, *Oncorhynchus* spp. *Acta Hydrobiologica Sinica*, 30, 508–514.

- Foss, A., Imsland, A.K. and Vikingstad, E., 2009. Compensatory growth in Atlantic halibut: Effect of starvation and subsequent feeding on growth, maturation, feed utilization and flesh quality. *Aquaculture*, 290, 304–310.
- Gan, L., Ma, X.Z., Zhang, W.B., Chen, Z.Z., Yuan, Y. and Wang, W., 2008. The Growth comparison larvae and juveniles of of Pelteobagrus vachelli and Pelteobagrus fulvidraco. Journal of South China Agricultural University, 29, 71-84.
- Hayward, R.S., Noltie, D.B. and Wang, N., 1997. Use of compensatory growth to double hybrid sunfish growth rates. *Transactions of the American Fisheries Society*, 126, 316–322.
- Hayward, R.S. and Wang, N., 2001. Failure to induce overcompensation of growth in maturing yellow perch. *Journal of Fish Biology*, 59, 126–140.
- Heide, A., Foss, A., Stefansson, S.O., Mayer, I., Norberg, B., Roth, B., Jenssen, M.D., Nortvedt, R. and Imsland, A.K., 2006.
 Compensatory growth and fillet crude composition in juvenile Atlantic halibut: Effects of short term starvation periods and subsequent feeding. *Aquaculture*, 261, 109–117.

Huang, Q., Meng, F.Y., Chen, Y., Sun,

214 Ruan et al., Compensatory growth, proximate composition and amino acid contents after ...

H.M. and Xie, C.X., 2007. Effect of starvation and refeeding on muscle composition of yellow catfish (*Pseudobagrus fulvidraco* Richardson). *Journal of Jilin Agricultural University*, 29, 102– 106.

- Känkänen, M. and Pirhonen, J.,
 2009. The effect of intermittent feeding on feed intake and compensatory growth of whitefish *Coregonus lavaretus* L. *Aquaculture*, 288, 92–97.
- Li, X.Q., Chen, Y.F. and Li, K., 2006. Age and growth characters of an alien catfish *Pelteobagrus fulvidraco* in lake Fuxian, China. *Acta Zoologica Sinica*, 52, 263– 271.
- Li, Z., Xie, S., Wang, J., Sales, J., Li,
 P. and Chen, D., 2009. Effect of intermittent starvation on growth and some antioxidant indexes of *Macrobrachium nipponense* (De Haan). *Aquaculture Research*, 40, 526–532. or
- Li, M.F., 2010. Progress on study on biology of *Pelteeobaagrus* fulvidraco (Richardson). Modern Fisheries Information, 25, 16–22.
- Liu, J.Y., Li, A.H., Zhou, D.R., Wen, Z.R. and Ye, X.P., 2010. Isolation and characterization of *Edwardsiella ictaluri* strains as pathogens from diseased yellow catfish *Pelteobagrus fulvidraco* (Richardson) cultured in China. *Aquaculture Research*, 41, 1835– 1844.
- Luo, Z., Liu, Y.J., Mai, K.S., Tian,

L.X., Yang, H.J., Tan, X.Y. and Liu, D.H., 2005. Dietary 1methionine requirement of juvenile grouper *Epinephelus coioides* at a constant dietary cystine level. *Aquaculture*, 249, 409–418.

- Mattila, J., Koskela, J. and Pirhonen, J., 2009. The effect of the length of repeated feed deprivation between single meals on compensatory growth of pikeperch *Sander Lucioperca. Aquaculture*, 296, 65– 70.
- Morales, A.E., Pérez-Jiméneza, A., Hidalgo, M.C., Abellán, E., and Cardenete, G., 2004. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 139, 153–161.
- Nikki, J., Pirhonen, J., Jobling, M. and Karjalainen, J., 2004. Compensatory growth in juvenile rainbow trout, *Oncorhynchus mykiss* (Walbaum), held individually. *Aquaculture*, 235, 285–296.
- **Oh, S. and Noh, C., 2007.** Effect of restricted feeding regimes on compensatory growth and body composition of red sea bream, *Pagrus major. Journal of the World Aquaculture Society*, 38, 443–449.
- Oh, S., Noh, C., Kang, R., Kim, C., Cho, S. and Jo, J., 2008. Compensatory growth and body compostion of juvenile black

rockfish *Sebastes schlegeli* following feed deprivation. *Fisheries Science*, 74, 846–852.

- Quinton, J.C. and Blake, R.W., 1990. The effect of feed cycling and ration level on the compensatory growth-response in rainbow-trout, *Oncorhynchus mykiss. Journal of Fish Biology*, 37, 33–41.
- Tang, Q., Liao, Q.Z., Zeng, J., Wang, C.F., Lei, X.W. and Wang, C.F., 2011. Influence of dietary phosphorus levels growth on performance, body composition, and serum biochemical indicators of juvenile Pelteobagrus fulvidraco. Journal of Huazhong Agricultural University, 30, 506-510.
- Tian, X. and Qin, J.G., 2004. A single phase of food deprivation provoked compensatory growth in barramundi *Lates calcarifer*. *Aquaculture*, 224, 169–179.
- Tian, X., Fang, J. and Dong, S., 2010. Effects of starvation and recovery on the growth, metabolism and energy budget of juvenile tongue sole (*Cynoglossus semilaevis*). *Aquaculture*, 310, 122–129.
- Tripathi, G., and Verma, P., 2003. Starvation-induced impairment of metabolism in a freshwater catfish. *Zeitschrift für Naturforschung C-A Journal of Biosciences*, 58, 446-451.
- Turano, M.J., Borski, R.J. and
Daniels, H.V., 2007.Compensatory growth of pond-
reared hybrid striped bass, Morone
chrysops×Moronechrysops×Morone

fingerlings. *Journal of the World Aquaculture Society*, 38, 250–261.

- Wang, Y., Cui, Y., Yang, Y. and Cai, F., 2004. Compensatory growth in hybrid tilapia, *Oreochromis* mossambicus×O. niloticus, reared in seawater. Aquaculture, 189, 101–108.
- Wang, Y., Li, C., Qin, J.G. and Han, H., 2009. Cyclical feed deprivation and refeeding fails to enhance compensatory growth in Nile tilapia, *Oreochromis niloticus* L... *Aquaculture Research*, 40, 204– 210.
- Wu, L., Xie, S., Zhu, X., Cui, Y. and Wootton, R.J., 2002. Feeding dynamics in fish experiencing cycles of feed deprivation: a comparison of four species. *Aquaculture Research*, 33, 481– 489.
- Wu, L., Xie, S., Cui, Y. and Wootton, R.J., 2003. Effect of cycles of feed deprivation on growth and food consumption of immature threespined sticklebacks and European minnows. *Journal of Fish Biology*, 62, 184–194.
- Yang, Y., Chen, L.Q., Li, E.C., Yu, N., Qin, C.J. and Jiang, X.Q., 2011. Effect of dietary carbohydrate level on growth, body composition and biochemical indices in serum of *Pelteobagrus vachell. Journal of Fudan University*, 50, 625–631.
- Yao, F., Yang, Y.O., Zeng, S.Q. and Su, S.P., 2009. Effects of feeding regime on compensatory growth of yellow catfish larvae. *Journal of Anhui Agricultural University*, 36,

236-240.

- Ye, S.W., Li, Z.J., Lek-Ang, S., Feng, G.P., Lek, S. and Cao, W.X., 2006. Community structure of small fishes in a shallow macrophytic lake (Niushan Lake) along the middle reach of the Yangtze River, China. Aquatic Living Resources, 19, 349–359.
- Zhu, X., Xie, S., Zou, Z., Lei, W., Cui,
 Y., Yang, Y. and Wootton, R.J.,
 2004. Compensatory growth and food consumption in gibel carp, *Carassius auratus gibelio*, and Chinese longsnout catfish, *Leiocassis longirostris*, experiencing cycles of

feed deprivation and re-feeding. *Aquaculture*, 241, 235–247.