بررسى ميزان مواد مغذى، توليداتاوليه BOD و COD در استخر هاىكشت توأمكيور ماهيان چیينى باكاربردكود آلى

عباسیلى استكى

AIYA

-

 نتايج نشان داد كه على رغم كاريرد كود آلى به ميزان ألـي

 است. بدليل همبستگى COD و BOD با ساير عوامل شيميا يی محيطى به نظر مىرسل علاون
 ماهى استفاده نمود.

لغاتكليدى : مواد مغذى ـ COD _ BOD كيور ماههيان خحينى

متلدمه

فلسفه كشت توأم ماهيان بر اين اساس استوار است كه يك گونه ماهى به تنهباييى نمىتواند از
 جهت استفاده بهينه از سطوح مختلف زنجيره غذايىى گونههاى مختلف ماهى را را با عادات غذايـى

 (Ctenopharyngodon idella) (زئو (Hypophthalmichthys nobilis)

 كثورهاى مختلف جهان و برحسب تقاضاى بازار يكى از گَونه ماهيماى فوقالذي الذكر بـعنوان مـاهى اصلى قلمداد شده و تغذيه دستى مى شود و

 را تشكيل داده و به منظور افزايش توليدات طبيعى به أستخرها كودآلكى و شيميايىى مـتناسب بـا وضعيت استخر افزوده مى شود. در تئورى قديمى كشت توأم فرض بر آنستكه كودها در محيط آب توسط.ميكروبها تجز يه شده و مواد مغذى مانند نيترات، فسفات و غيره توليد مى نمانمايند كه موجب

 دانشمندان متعددى از جـمله (1983) .Spataru et al در طـى تـحـيـيقات خـود بـه أيـن نـتيجه

رسيدند كه ماهيان فيتوفاگ، سرگَنده و كپور در ارتباط با ذرات معلق در آب قدرت انتخاب قابل ملاحظهاى ندأرند و با فيلتر كردن آب و متناسب با ابعاد چشمـههاى فيلترهاى خود ذرات جاندأر (فيتوپلانكتون و زئوپانكتون) و ذرات بـى جان (دتريتوسها) مـعلق در سـتون أبـرا فـيلتر كـرده و مورد تغذيه قرار مىدهند. بـر اسـاس ايـن نـظريهها از كـاربرد كـود آلى تـازه و كـود شـيميايى در استخر ها خوددارى شد و بجاى آن از كودآلى پوسيده شده در محيط بى هوازى اسـتنفاده گـرديد (تا تراكم ذرات در اندازههاي مختلف در ستون آب و در نهايت غذاى مورد نياز هر سهگونههاى فوق تأمين شود (Olah , 1985 ; Olah , 1986 ; Moav et al., 1977). هدف از اين تحقيق استفاده از سيستهمكشت توأم با تراكم بالا و محوريت ماهى فيتوفاگ همراه باكاربرد كودآلى پوسيده و تأثير اين عوامل بر مواد مغذى در ستون آب و رسوب و توليدات اوليه مىباشد.

مواد و روشها

آزمـايش در طول دور0 پرورشى سـال VG شماره 1 تا ه) با مساحت هر استخر حدود 1000 مترمربع و عمق متوسط ا متر واقع در مركز تكثير و پرورش آبزيان اصفهان انجام گرفت. أستخرها در اواسط زمستان كاملاً خشكى و در تأريخ
 جدول شماره ا توضيح داده شده است. جهت كوددهى استخرها از كود گاوى پوسيله شـده در محيط بیىوازى (Fermented cow manure) به ميزان روزانه هoا كيلو در هكتار در استخرهاى شماره ا و Y و
 شماره $ا$ به ميزان 9000 عدد در هكتار بود. تركيب و تراكم, گونهأى و ساير مـوأرد مـديريتي در جدول شماره \ا, ائه شده است. جهت اندازهگيرى توليدات اوليه از روش سه نـتطهاى تـغييرات روزانه اكسيزن (McConnel, 1962 ; Odumn , 1956) أستفاده شده. در طول دوره پرورش موأد مغذى مانند نيترات، آمونيه، فسفات وكربن آلى كل در ستون آب و نيتروثن كل، فسفر كل وكربن آللي كل رسوب اندازهگیيرى شدند.

 داخخلى ه سانتيمتر از سه ايستگاه در هر أستخر و در هر ايستگاه بَ تا ه نقطه از ستون آب أنجام كَرفت. نمونههاى أب بلافاصله به آزمايشگًاه منتقل مىشدند. نمونههاى رسوب توسط لوله پليكا از
 شمارهگذارى شده بخوبى مخلوط و به آزمايشگاه منتقل شدند. آزمـايشات بـر اسـاس روشهـهـاى (1) COD Clesceri et al. , 1989) انجام گوفتند. ميزان كربن آلى محلول آب از طريق (آلى (اكســـــيزثن مــورد نـــياز شـــيميائى) و بـــا احــــتساب ضــريب احبر/ه مـــحاسبه شـــد (Stumn \& Morgan, 1.970). جهت تعيين كربن آلى رسـوب حـدود ه
 در حرارت هه ها درجه قرار داده و از تفاضل وزن رسوب در ها ال درجه با مها درجه ميزان كـربن
 ساعت در تأريكى و COD به روش بيكرومات پتاسيمه اندازْ گّيرى شـدند (Fel Foldy , 1987). دادههاى قابل مقايسه با برنامه كامْييوترى Jump مقايسه گَرديدند.

در طول دوره پرورش در استخرهاى آزمايشى ميزان اكسيثن متفاوت بود. در اكثر استخرهاى آزمـايشى حـداقـل مـيزان BOD 24 در ارديـبهششت مـاه اندازهگيرى شد كه به موازات فصل پرورش به مقدأر آن افزوده شد و در ماههانى مرداد و شهريور به حداكثر رسيد و در مهر ماهكاهش يافت. ميزان COD در أرديبهشت I 1 تا \& بr، در مرداد YY تا
 استخرهاى يرورشى حداقل (1 ميلىگرم اكسيزن در ليتر متعلق به استخر شماره \& در ارديبهشت ماه و حداكثر 109 ميلىگرم در ليتر اكسيثن متعلق به استخر شماره ب در شهريور ماه بود (جدول

در طى آزممايشات غلظت كل آَمونياك محلول مابين حداقل صفر در شـهريور مـاه در اسـتخر
 مواقع ميزان كل آمونياك AV تا ما حداكثر متوسط ماهانه غلظت كل آمونياكى مـحلول در ارديـبهشت مـاه بـود كـه بـتدريج تـا آخـر تابستان به ميزان حدأقل خود رسيد و در اوايل پاييز مجدداً افزايش يافت (شكل ().

شكل 1 : غلظت كل آمونياكى متحلول در آب استخر هاي آزمايشى برحسب ميكروگرم در ليتر ميزان نيتروزن معدنى كل ستون آب در طول دوره پرورش در اسـتخرهاى مـورد آزمـايش از حداقل UV ميكروگرم در ليتر در ارديبهشت ماه در استخر شماره در ليتر در خرداد ماه در استتخر شماره متفاوت بود. در طول دوره يرورش متوسط نيتروزن كل در أستخر شماره ا حداقل و در أستخر شماره ז در حداكثر قرار داشت. هتوسط ماهانه نيتروزن كل از ارديبهشت ماه اففزايش يافت و با يكى كاهش شديد در تير ماه مواجه شد و در مرداد ماه به

حدأكثر رسيد و سپس به تدريج كاهش يافت و در مهر ماه به حدود مقدار ارديبهشت مـاه نـايل رسيد (شكل ץ).

شكل Y : ميزان كل نيتروزُن موجود در ستون آب أستخر هاى آزمايشى برحسب ميكروگرم در ليتر در طول دوره پرورش غلظت فسفات در ستون آب استخرها مابين صفر تـا N^ مـيكروگرم در ليتر متفاوت بود. حداقل ميزان نوسانات فسفات در استخر شماره 「و حداكثر آن در استخر شماره Q مشاهده شد (شكل ${ }^{\text {®). }}$

OFID ميزان كربن آلى كل موجود در ستون آب أستخرهاى آزمايشى از حداقل ميكروگرم در ليتر متفاوت بود. در اكثر استخرها ميزان كـربن آلى سـتون آب در ارديـبهششت مـاه حداقل بود و در طول دوره پرورش افزايش يافت و در ماههأى مرداد و شهريور به حدأكثر ميزان خود رسيد و سپس در پاييز كاهش حاصل نمود (شكل f).

E ميانعين.
شكل ץ : ميزان فسفات در آب استخخر هاى آزمايشى برحسب ميكروگرم در ليتر
Thousands

■
شكل †

ميزان نيتروزن كل رسوب در طول دوره پـرورش در اسـتخرهاى مـورد آزمـايش ل/ ل/ تـا ميلى گرم در گّرم متغير بود. در استخر شماره ا ميزان نيتروزن كل رسوب در ارديبهشت ماه |/T بوه و در خرداد ماه به حداقل ل/ه رسيد كه در ماههایى بعدى افزأيش يافت و در شهريور ماه \& ا/ ميلى

 افزايش يافت و در شهر يور ماه به Y حداقل V V $1 / 0 \mathrm{~J}$ ارديبهششت ماه ثبت شد كه بتدريج افزايش يافت تا در مرداد ماه به حـداكـثر l/DA حداقل 1 ميلىترم در ترم نيتروزن كل رسوب در استخر شماره D در ارديبهشت ماه و حداكثر INV

 ,سوب أفزوده شده است (جدول́ ت)
 گَرم در مرداد ماه در استخر شماره \& متغير بود و در أكثر استخرهاى آزمايشى ميزان فسفر كل رسوب در انتتهاى فصل بيشتر از ابتداى فصل بدست آمد. در استخر شما, \ ، ITY، در استخر
 فسفر كل رسوب أفزوده شد (جدول ${ }^{\text {(}}$.
جدول r: ميزان نيتروزن كل (TN)، فسفر كل (TP) وكربن كل (TC) رسويات در استخرهاى مورد آزمابشُ برحسب ميلىگرم در گرم وزن خششك در مامهاى مختلف

**			شهريور			مرداد			تير			خرداد			ارديبهت			*6.
TC	TP	TN																
-	-	-	90	- Mrv	1/99	-	- ハTO	L/rr	-	-/rN1	$1 / 10$	-	0109	-N	arma	-10	1/,1	1
-	-	-	1ro	019 y	1/9	-	-rit	$0 / 91$	-	0/40	-/M	-	-1	$0 / 9$	+9, N	$0 / 41$	1/1。	r
-	-	-	9.	- \%!	i/r	-	- /ro	1/19	-	0/09r	$0 / \wedge 9$	-	-r	1/19	GMNT	$0 / \mathrm{Fv}$	1ro	r
-	-	-	90	- /Af	1/04	-	1/00	1/0A	-	1/100	I/r	-	0.090	INV	AV/40	or.	$1 / 0 \mathrm{~V}$	*
-	-	-	1ro	1100	1/4r	-	$0 / 40$	1/90	-	0.41	1/40	-	-/0^0	ino	Vo/ar	-/00	1/0	0

 9/1^ متابوليسم جمعيت از كل توليدات أوليه و تنفس جمعيت تشكيل ميشود. حداقـل تـوليدات اوليه 19/همر ارديبهشت ماه در استخر شماره f و حداكثر N/9 ترم كربن در مترمربع در روز در شهريور ماه در استخر شماره ז اندازه گيرى شد و در طول دوره پرورشى متوسط كل توليدات اوليه
 حداكثر آن در شهريور ماه اندازهگيرى شد و متوسط كل توليدات اوليه در طول دوره پرورش در

 حداقل ميزان آن به أستخر شماره ه و حداكثر آن به أستخر شماره \& تعلق داشت. كل تلفات 9 تا

جدول ٪ : اطلاعات مربوط بدكل توليدات در أستخرهاى آزمابئى

در آناليز آمارى ضريب هـمبستگیى COD بـا BOD، نـيتروثن مـعدنى كـل سـتون آب، PO 3

 همبستگی كربن آلى كل ستون آب با 1990 BOD با بدست آمد. ضريب همبستگى بين توليدات.

جدول شماره ه: ضريب همبستگى بين عوامل مختلف اندازهگيرى شده در استخر هاى مورد آزمايش

ميزان كل آمونياك محلول بيانگُّ مجموع غلظت يون آمونيم, وكَاز آمونياك محلول مىباشد كه
 1970) همانگَونه كه قبلاًَكَته شد در اكوسيستمهاى آبى منبع اصلى آمونياكَ مواد دفعى ماهىىها
 تغييرات متابوليسم موجودات زنده موجود در آب مىباشد. همانگَونه كـه در نـتايج گَفته شـد در طول دوره هرورش غلظت آمونياك كل در اكثر مواقع AV تا FD. ميكروگرم در ليتر نوسان داشت و فقط در يك مورد در شهريور ماه در استخر شماره ا به صفر رسيد. اين نوسانات متعادل احتمالاً ممكن است در أثر تعادل در ميزان توليد و مصرف آمونياك حاصل شده باشند. بدين مـعنى كـه توليد آمونياك توسط تجزيه ميكروبى كود آلى در محيط استخر بسيار كمتر از شرايط معمول، كه در تـحت أن كـود تــازه وارد اسـتخرها مـىشود، مى باشد. بـعلاوه ايـن تـوليد مـتعادل تـوسط فيتوپالانكتونها و ساير طرق مصرف شده أست. متابوليسمم جمعيت، سيكل ازت و تبادل با رسوبات از مهمترين عوامل مؤثر بر غلظت نيترورن

معدنى كل مىباشند (Wetzel , 1975).
كاهش نيترورن معدنى در اواخر دوره پرورش نسبت به أوايـل دوره نشـان دهـنده آنست كـه على غغم, كاربرد كودآلى اكثر اكوسيستم استخرها توان هضهم بار نيترورثنى افزوده شده را داشتهاند. فسفر يكى از مهمترين مواد مغذى در اكوسيستمههاى آبى أست. اهميت فسفر بيشتر بواسطه
 (Wetzel , 1975). على (Wغم غلظت كمم فسفر سيكل آن بسيار سريعتر از سيكل نـيتروثن و كـربن انجام مىشود (Goldman \& Horne , 1983). از اينرو ممكن است كه ميزان فسفات در زمـان فعاليت شديد متابوليكى موجودات به صفر برسد (Mandal , 1976). اين پـديده در اسـتخرهاى پرورش ماهى غالباً در فصل تابستان مشاهده مىشود (استكى ، IYVY). بنابراين كاهش فسفات تا حد صفر در استخرهاي شماره \& و ه در شهريور ماه قابل توجيه مى باشد. كربن آلى كل ستون آب بيانگر ميزان كربن آلى موجود در يدن زئوپلانكتونها، فيتوپِلانكتونها،

باكتريوپلانكتونها، دتر يتوسهها، مواد آلى محلول و غيره بوده و ميزان آن متناسب با بار مواد آلى كه از خارج وا, كد اكوسيستهم مـىتردد (مـانـند كـود آلّى و غـيره)، مـواد آلى سـنتز شـده در خـود اكوسيستم (فتوسنتز) و تنفس جمعيت مىباشد (Wetzel , 1975). در استخرهاي مورد آزمايش علت افزايش تدريجى ميزان كل كربن ستون آب از ابتدأى فصل تا مرداد و شهريور ماه بواسـطه كاربرد كود آلى و اففزايش توليدات طبيعى در ستون آب مىباشد. در مهر ماه على, غمم ثابت بودن ميزان كوددهى از شدت فتوسنتتز و متابوليسم باكترىها كاسته شد لذا ميزان كربن آلى كل ستون آب نيز كاهش يافت.
در اكوسيستمههاى آبى از جمله أستخرهاى پرورش ماهى مواد مغذى (C, P , N) بين ستون آب و رسوب مبادله مىشوند. در استخرهاى پرورش ماهی نيتروزن، فسفر و كربن آلى بـه مـقدار زياد و در قالب كودهاي آلى و يا غذاي دستى وارد اكوسيستمم مىشوند و مقدار زيادى از اين مواد مغذى در رسوب استخر تجمع مى يابند. معمولاً باكتريههاى سطح رسوب قادر نيستند همه مـواد آلكى كه در اثر توليدات اوليه خود استخر و كوددهى يا غذادهى در سـطح رسـوب تـجمع حـاصل نمودهاند را تجزيه كنند. معمولاً باكتر يها كربن آلى موجود در بافتهاى نرم دتر يتوس,ها را زودتـر تجزيه كرده و اندامههاي سخت آنها در رسوبات تجمع حاصل مى نمايند كه موجب أفـزايش كـربن ألى رسوب در طول دوره پرورش مىشود (Fabry , 1975) . چون شرايط أستخرهاى پرورش ماهى هوازى است بدين معنى كه بيوتوربيشن (Bioturbation) ناشى از فعاليت ماهیى اها خصوصاً ماهى كيور معمولي هموا, ه موجب هوانهى و رساندن اكسيزن به سطح رسوب مىشود بنابراين فسفر آزاد شده در آث تجزيه باكتريايى مواد آلى جذب ذرات سطح رسوب ميشود (استكىى ، ITVY). اين. پد يده موجب افزايش فسفر كل رسوب در طول دوره پرورش مىتردد. بنابراين تجمع فسفر و كربن آلى در رسوبات استتخرهاى آزما يشى قابل توجيه مىباششند. برخلاف كربن و فسفر ، سيكل نيتروزن در استخرهاى پرورش ماهیى بسيار پیچچيده مـيى باشد.
 دنيتر يفيكاسيون تأثير بسزايیى بر ميزان كل نيتروثن دارند. در شرايط هـوازى در سـطح رسـوبات آمونياك حاصل ا; تجزيه باكتريايى مواد آلى با ستون أَب مبادله شـده و يـا جـنـب ذرات سـطح

رسوبات مىگردد. باكتريهاى سيكل ازت آمونياك جذب شده را به نيترات تبديل مىنمايد كه اين
 چون معمولاً شرايط در عمق رسوبات بىهوازى است بنابراين احتمالاً نيترات مجدداً به آمونياك
 متناسب با طبيعت استخر و نحوء جريان سيكل ازت متفاوت مىباشد. بر اساس منابع موجود، در استخرهاى مختلف كیور ماهيان در كشورهاى مختلف ميزان كل فسفر رسوب بين 101ه تـا //س،
 متفاوت بوده است (استكى ، IYVY) بنابراين مقدار كل مواد غذايى موجود در رسوب استخرهاى مورد آزمايش با منابع موجود همخوانى دارد. امروزه در دنيا محققين امر پرورش آبزيان از توليدات اوليـه بـه عـنوان شـاخص كـوددهى در
 بكار برد و به توليدات اوليه \& تا

 است (استكى ، IYYT). بنابراین چنانچֶه ميزان توليدات اوليه بعنوان شاخص كوددهى بكار رود و چچون دامنه تغييرات توليدات اوليـه انـدازهگـيرى شـده در اسـتخرهاي مـورد آزمـايش بـا دامـنه تغييرات آن در استخرهاى يرورش ماهيان گَرمابى همخوانى دارد بنابراين ميزان هكتار در روز كود آلى پوسيده بكار برده شده در استخرهاى آزمايشى مناسب بـوده است. بـدين
 جمعيت موجود در آنها مورد سوخت و ساز قرار گرفته است.
در تجزيه و تحليل آمارى نيترورن معدنى كل ستون آب، كربن آلى كل ستون آب و و توليدات اوليه ضريب همبستگّى بالاييى را با ميزان BOD , COD جمعيت و ميزان BOD و COD بشدت تحت تأثير يكديگر قرار دارند. بنابراين همبستگى آن با

كه مصرف اكسيزن توسط ميكرواركانيسمها و مواد شيميايى موجود در ستون آب است و
 گَونه تغيير در ميزان COD ستون آب بر توليدات اوليه و BOD تأثير مىیَذارد و بالعكس افزايش توليدات اوليه موجب أفزايش بيوماس فيتوپلانكتونها و مصرف كنندكان اوليه مانند زئوپلانكتونها مى شود كه در نتيجه آن COD آب افزايش حاصل مىكند. بنابراين هنگًامى كه كود آلى يوسيده

 هرورش ماهى كه كـود آلى پـوسيده در آنـها مـصرف مـى شود از COD و BOD

 ميلىگَرم در ليتر اكسيزن در حرارت (أستخرهاى یرورش كیور ماهيان چیينى كه آب آن از آبهاى آلوده بـه

در ليتر أكسـيزن تَارشي نمودهاند. در آزمايشات فوتالذكر بر اساس مديريت استخرها و همگگام با افزايش بار مواد آلى وأرد شده به استخر مـيزان COD نيـز افزايش يبفته است. على غیم كاربرد غذأى دستى و علوفه در اسـتتخرهای پـرورشى مـتوسط كـل تـوليـ خـالص در

 نمايل. بر اساس نظر بسيارى از دانشمندان مانند: Olah , 1986 در اكوسيستهمهایى آبى خصوصاً اســتخرهاى یــرورش مــاهی عــلاوه بـر زنـجيره غـنذايـي مـعمولى كـه بـر السـاس تـوليدات اوليـه فيتوپلانكتونهها استوار است زنجـيره غذايی ديگرى وجود دارد بنام زنجـيره غذايـي ميكروبى كه بـه موازات زنجيره غذايى فوقالذكر عمل مى نمـايد بر اساس نظر اين دانشمندان در أكوسيستمهراي آبى مـيكروبهها تنهها نقش تجزيه مواد آلى و يا به أصطلاح معدنى كردن موأد آلىى رأ بعهره ندارنـلـ.
 بسـيارى از اكوسيستممهاى أَبي توليد و افزايش بيوماس ميكروبها برابر و يا حتى بسـيار بـيشتر از توليدات اوليه انست. اين ميكروبها مى تواننل مستقيـماً توسطا موجودات آبزى فيلتر كـنـنده هـورد

 منابع غذايـي بسيار غنى ميباشد. هنگامى كه موجودات فيلتتر كنـنده أيـن ذرات مـعلق را مسصرف میكنـن ميكروبهاى همـراه آنرا نيز هضمر و جذب مىنماينـد. بعلاوه بسيارى از مـيكروبهلاى آزاد در
 شده و توسط موجودات فيلتر كـنـنـه مصرف مىشوند. و چون رشد و توليـد مـيكروبها ممكي است برابر توليدات اوليه فيتو پلانكتونها باشد بنابراين تأثير مهرمى بر روند رشــل و تـوليد مـاهـى دارنــنـ. بعلاوه تلفات كل ماهیى ها در إستخرهاى آزمايشى كمـتر از استتخرهای پرورشى میىباشد. بنابرايـن

 تقليل دهـ.

قسمت اعغطه آمادهسازى استخر ها و هـديريت پـرورش مـاهى در ايـن پـروزه تـوسط جـهادكَر مخلص و پر تلاش برادر مرحوم مهندس رفيعى مسئول وقت مركز تكثير و پرورش آبزيان الصفهان

 خانمهيا توكليان و ابوطالبى بواسطه همكارى در نمونه گير يها و تايب اين گَزارش و و از برادر مهـندس
 ورود اطلاعات به كامييوتر و رسمه نمودارها تشكر و قدردانى مىش وشود.

استكى،ع.ع.، ITVY. ساختار اكـوسيستم و هـتابوليسهم جـمعيت در اسـتخرهای پـرورش مـاهی،

سارواش. 19 ص.

Bergheim, A., 1982. Estimated pollution loadins from Norwegian fish farms. Aquaculture, Vol. 28, pp.347-361.
Boyd, C.E., 1982. Water quality in warmwater fish ponds. Elsevier Sci. Publ. Amsterdam. 318 P .
Boyd, C.E. , 1985. Chemical budget for channel catfish ponds. Trans. Am. Fish. Soc.,

Vol. 114, pp.291-298.
Chang, W.Y.B. , 1987. Fish culture in china. Fisheries, Vol. 12, pp.11-15.
Clesceri, L.S. ; Greenberg, A.E. and Trussell, R.R., 1989. Standard methods for the examination of water and waste water. 17 th edition. American Public Health Association. Washington D.C., U.S.A.

Fabry, G. , 1975. A szai - vasi vizesforgoban kezelt tavak talajainak kemiai vizsgalata. Haltenyesztesi kutato intezet, szarvas, Hungary, 52 P.

Fel Foldy, L. , 1987. A biologiai vizmimosites. Vizugyi Hidrobiologia, Vol. 16, pp.1258.

Goldman, C.R. and Horne, A.J., 1983. Limnology. McGraw - Hill International Book Company, London. 464 P.

Lewkowicz, S. , 1987. Investigations on intesification of carp fingerling production. 6. Primary production and oxygen conditions. Acta. Hydrobiol. Vol. 29, No. 3, pp.339-353.

Ling, S.W., 1974. Keynote address. 5th Annual workshop world mariculture Soc., pp.19-25.

Mandal, B.K., 1976. Studies on the primary productivity and physicochemical factors of two fish ponds at Burdwon, west Bengal (India). Acta Hydrobiol., Vo. 18, No. 2, pp.175-182.

McConnel, W.I., 1962. Productivity relation in carbon microcosms. Limnol. Oceanogr., Vol. 7, pp.335-343.

Moav, R. ; Wohlrath, G. ; Schroeder, G.L. and Hulata, G., 1997. Intensive polyculture of fish in freshwater ponds. 1. Substitution of expensive feeds by liquid cow manure. Aquaculture. Vol. 10, pp.25-43.

Odumn, H.T., 1956. Primary production on flowing waters. Limnol. Oceanogr. Vol. 1, pp.102-117.

Olah. J., 1985. Dosing experiment with fermented poltry manure in polyculture fishponds. text book. Fisheries Research Institute, Szarvas, Hungary. '?

Olah, J. , 1986. Carp production in manured pond. Aquaculture of cyprinids, INRA. Paris. pp.295-303.

Pokorny, J. ; Tomanova, J. and Nemacova, Z., 1990. Decline in nitrate content in carp ponds during the growing season. Proc. FAO - EIFA sym. prague. pp.15-18.

Pokorny, J. ; Kuet, J. ; Omdok, J.P. ; Toul, Z. and Ostrye, L., 1984. Production ecological analysis of a plant community dominated by elodea candemisis Michl. Aquatic, Botany, Vol. 19, pp.263-292.

Santiago, A.E., 1987. Evaluation of the high rate algae pond system for soft drink waste treatment and for fish culture. Asian. Environment. Vol. 9, pp.28-34.

Spataru, P. ; Wohlharth, G.W. and Hulata, C.N. , 1983. Studies on the natural food of different fish species in intensively manured polyculture ponds. Aquaculture. Vol. 35, pp.283-298.

Stumn, W. and Morgan, J.J., 1970. Aquatic chemistry wiley - interscience, NewYork, 580 P.

Wetzel, R.G., 1975. Limnology, W.B. Suonders, Philadelphia. 743 P.
Zhang, F.L.; Zhu, Y. and Zhou, X.Y., 1987. Studies on the ecological effects of varying the size of pond loaded with manures and feeds. Aquaculture, Vol. 60, pp.107-116.

