
تعیین تاثیر کورکومین به تنهایی و به همراه پپتید ضد باکتریایی CM11 بر روی پروماستیگوت لیشمانیا ماژور سویه ایران (MRHO/IR/75/ER) | ||
Archives of Razi Institute | ||
Article 11, Volume 74, Issue 4, January 0, Pages 413-422 PDF (851.86 K) | ||
Document Type: مقالات پژوهشی | ||
DOI: 10.22092/ari.2018.122300.1222 | ||
Abstract | ||
ابتلا به لیشمانیوز جلدی در بیشتر از 90 کشور گرم سیر، نیمه گرمسیر و اروپای جنوبی قابل مشاهده میباشد. در غیاب واکسن موثر، تنها راه مبارزه و کنترل لیشمانیوز از طریق معالجه معمول دارویی میباشد. داروی گلوکانتیم که به عنوان داروی انتخاب اول بر ضد لیشمانیوز مورد استفاده قرار میگیرد، از معایب و آثار جانبی زیادی از قبیل سمی بودن و ایجا د مقاومت دارویی برخوردار است. کورکومین جزء فعال زردچوبه میباشد و دارای فعالیت های فارماکولوژیک و بیولوژیک از قبیل آنتی میکروبیال و ضد تکثیر سلولی میباشد، و این خصوصیات آن را به عنوان آلنترناتیو خوبی برای مبارزه با میکروبها قرار میدهد. پپتیدهای ضد باکتریایی از قبیل CM11 که یک پپتید کوچک با 11 اسید آمینه میباشد، همچنین میتوانند به عنوان داروهایی بر علیه طیف وسیعی از میکرواورگانیسمها مورد استفاده قرار گیرند. هدف از مطالعه حاضر ارزیابی تاثیر کورکومین به تنهایی و به همراه پپتید CM11 بر روی شکل پروماستیگوت انگل لیشمانیا بود. در رنگ آمیزی گیمسا نشان داده شد که کورکومین وابسته به غلظت (5 µM, 10 μM, 20 μM, 40 μM and 80 μM) بر روی موفولوژی تاژک و شکل انگل تاثیر میگذارد. نتایج MTT و رنگ آمیزی Trypan blue نشان دادند که فرم پروماستیگوت انگل در مقابل کوکومین وابسته به غلظت حساس بود در حالی که حساسیت ملموسی در مقابل پپتید CM11 به تنهایی در غلظت 8 میکرومولار و یا به همرا کورکومین در غلظتهای 10 و 20 میکرومولار نشان نداد. نتایج این مطاله نشان میدهند که کورکومین میتواند به عنوان کاندید بر علیه لیشمانیای جلدی مورد ارزیابی قرار گیرد. | ||
Keywords | ||
کورکومین; آنتی باکتریال پپتید CM1; پروماستیگوت; لیشمانیا ماژور; گلوکانتیم | ||
References | ||
Aerts, A.M., Bammens, L., Govaert, G., Carmona-Gutierrez, D., Madeo, F., Cammue, B., et al., 2011. The antifungal plant defensin HsAFP1 from Heuchera sanguinea induces apoptosis in Candida albicans. Front Microbiol 2, 47.
Ahmad, K., 2002. War and gerbils compound Afghan leishmaniasis epidemic. The Lancet Infect Dis 2, 268.
Anand, P., Kunnumakara, A.B., Sundaram, C., Harikumar, K.B., Tharakan, S.T., Lai, O.S., et al., 2008. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25, 2097-2116.
Andreu, D., Ubach, J., Boman, A., Wåhlin, B., Wade, D., Merrifield, R., et al., 1992. Shortened cecropin A-melittin hybrids significant size reduction retains potent antibiotic activity. FEBS lett 296, 190-194.
Araujo, C.A., Alegrio, L.V., Gomes, D.C., Lima, M.E.F., Gomes-Cardoso, L., Leon, L.L., 1999. Studies on the effectiveness of diarylheptanoids derivatives against Leishmania amazonensis. Mem Inst Oswaldo Cruz 94, 791-794.
Attia, A.M., Ibrahim, F.A., EL-Latif, N.A.A., Aziz, S.W., 2014. Antioxidant effects of curcumin against cadmium chloride-induced oxidative stress in the blood of rats. J Pharmacognosy Phytother 6, 33-40.
Berman, J., 1997. Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin Infect Dis 24, 684-703.
Bharti, A.C., Donato, N., Singh, S., Aggarwal, B.B., 2003. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor–κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101, 1053-1062.
Biswas, S.K., McClure, D., Jimenez, L.A., Megson, I.L., Rahman, I., 2005. Curcumin induces glutathione biosynthesis and inhibits NF-κB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Sign 7, 32-41.
Brown, B.A., Hunter, R.C., O'Hare, A., Erim, G., 1993. Hematology: principles and procedures, 6th ed. Lea & Febiger, Philadelphia.
Buhrmann, C., Kraehe, P., Lueders, C., Shayan, P., Goel, A., Shakibaei, M., 2014. Curcumin suppresses crosstalk between colon cancer stem cells and stromal fibroblasts in the tumor microenvironment: potential role of EMT. PLoS One 9, e107514.
Chan, M.M.-Y., Adapala, N.S., Fong, D., 2005. Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania. Parasitol Res 96, 49-56.
Chappuis, F., Sundar, S., Hailu, A., Ghalib, H., Rijal, S., Peeling, R.W., et al., 2007. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5, 873-882.
Delavari, M., Dalimi, A., Ghaffarifar, F., Sadraei, J., 2014. In vitro study on cytotoxic effects of ZnO nanoparticles on promastigote and amastigote forms of Leishmania major (MRHO/IR/75/ER). Iran J Parasitol 9, 6-13.
Desjeux, P., 1996. Leishmaniasis: public health aspects and control. Clin Dermatol 14, 417-423.
Desjeux, P., 2004. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27, 305-318.
Díaz-Achirica, P., Ubach, J., Guinea, A., Andreu, D., Rivas, L., 1998. The plasma membrane of Leishmania donovani promastigotes is the main target for CA (1-8) M (1-18), a synthetic cecropin A-melittin hybrid peptide. Biochem J 330, 453-460.
Guerrant, R.L., Walker, D.H., Weller, P.F., 2006. Tropical infectious diseases: principles, pathogens, and practice, Churchill Livingstone, second ed.
Haldar, A.K., Sen, P., Roy, S., 2011. Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol Biol Int 2011, 571242.
Hunter, G.W., Strickland, G.T., 2000. Hunter's tropical medicine and emerging infectious diseases, eighth ed. WB Saunders company, Philadelphia.
JG, P., 2011. Assessment of Leishmania major and Leishmania braziliensis promastigote viability after photodynamic treatment with aluminum phthalocyanine tetrasulfonate (AlPcS4). J Venom Anim Toxins Incl Trop Dis 17, 300-307.
Koide, T., Nose, M., Ogihara, Y., Yabu, Y., Ohta, N., 2002. Leishmanicidal effect of curcumin in vitro. Biol Pharm Bull 25, 131-133.
Lofgren, S., Miletti, L., Steindel, M., Bachere, E., Barracco, M., 2008. Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals. Exp Parasitol 118, 197-202.
Maheshwari, R.K., Singh, A.K., Gaddipati, J., Srimal, R.C., 2006. Multiple biological activities of curcumin: a short review. Life Sci 78, 2081-2087.
Markle, W.H., Makhoul, K., 2004. Cutaneous leishmaniasis: recognition and treatment. Am Fam Physician 69, 1455-1464.
Maróti, G., Kereszt, A., Kondorosi, E., Mergaert, P., 2011. Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162, 363-374.
Mashebe, P., Lyaku, J.R., Mausse, F., 2014. Occurrence of ticks and tick-borne diseases of livestock in Zambezi region: a review. J Agr Sci 6, 142-149.
Moghaddam, M.M., Abolhassani, F., Babavalian, H., Mirnejad, R., Barjini, K.A., Amani, J., 2012. Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli. Probiotics Antimicro 4, 133-139.
Moore, A.J., Beazley, W.D., Bibby, M.C., Devine, D.A., 1996. Antimicrobial activity of cecropins. J Antimicrob Chemother 37, 1077-1089.
Organization, W.H., 1995. WHO model prescribing information: drugs used in parasitic diseases.
Pinto, J.G., Fontana, L.C., de Oliveira, M.A., Kurachi, C., Raniero, L.J., Ferreira-Strixino, J., 2016. In vitro evaluation of photodynamic therapy using curcumin on Leishmania major and Leishmania braziliensis. Lasers Med Sci 31, 883-890.
Posner, M., 2010. Integrating systemic agents into multimodality treatment of locally advanced head and neck cancer. Ann Oncol 21, 246-251.
Reynolds, J., 1989. The Extra Pharmacopeia, 29th ed. The Pharmaceutical Press, London.
Shaked-Mishan, P., Ulrich, N., Ephros, M., Zilberstein, D., 2001. Novel intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem 276, 3971-3976.
Shakibaei, M., Buhrmann, C., Kraehe, P., Shayan, P., Lueders, C., Goel, A., 2014. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures. PLoS One 9, e85397.
Shakibaei, M., Mobasheri, A., Lueders, C., Busch, F., Shayan, P., Goel, A., 2013. Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. PloS one 8, e57218.
Singh, S., Sivakumar, R., 2004. Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 10, 307-315.
Tamang, D.G., Saier Jr, M.H., 2006. The cecropin superfamily of toxic peptides. J Mol Microbiol Biotechnol 11, 94-103.
Tiwari, B., Pahuja, R., Kumar, P., Rath, S.K., Gupta, K.C., Goyal, N., 2017. Nanotized curcumin and miltefosine, a potential combination for treatment of experimental visceral leishmaniasis. Antimicrob Agents Chemother 61, 1169-1116.
Toda, S., Miyase, T., Arichi, H., Tanizawa, H., Takino, Y., 1985. Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharm Bull 33, 1725-1728.
Toden, S., Okugawa, Y., Jascur, T., Wodarz, D., Komarova, N.L., Buhrmann, C., et al., 2015. Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis 36, 355-367.
Venkatesan, N., Punithavathi, D., Arumugam, V., 2000. Curcumin prevents adriamycin nephrotoxicity in rats. Br J pharmacol 129, 231-234.
Wilken, R., Veena, M.S., Wang, M.B., Srivatsan, E.S., 2011. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10, 12.
Zasloff, M., 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389-395. | ||
Statistics Article View: 14,961 PDF Download: 929 |