Original Article

Effect of Different Levels of Metabolizing Energy on Productive Performance of Two Grower Quail Strains

Ghanim Kesab, Y¹, Nasser Waleed, R^{1*}, Mahmood Khaleel, M¹

1. Department of Animal production, College of Agriculture and Forestry, University of Mosul, Mosul, Iraq

Received 23 July 2022; Accepted 13 August 2022 Corresponding Author: raghad_nasser@uomosul.edu.iq

Abstract

Two strains of Japanese quail (Coturnix coturnix japonica), including 250 birds of desert and 250 birds of white color, all one day old and unsexed, were divided into five treatment groups with 50 replicates in each group. These treatments included five levels of metabolism energy (ME) levels, including 2700, 2800, 2900, 3000, and 3100 Kcal/Kg diet. The study included one stage from day 1 to day 42 of birds' age. The results confirmed a statistically significant difference ($P \le 0.05$) caused by ME levels in the body weight, weight gain, feed conversion ratio (feed [g]: weight gain [g]), water consumption, water conversion ratio (ml: weight gain[g]), protein conversion ratio (protein [g]: weight gain [g]), energy conversion ratio (Kcal: weight gain [g]), carcass weight, in addition to albumin and triglyceride. Therefore, the results showed significant effects ($P \le 0.05$) of ME levels and the interaction on feed consumption, protein consumption, edible giblet percentage, tenderness, and juiciness. Significant differences ($P \le 0.05$) were also caused by ME levels in the total cholesterol. In addition, significant differences ($P \le 0.05$) have been found in the interaction on mortality percentage. Net return (Iraqi Dinar/live weight [Kg]) for desert quail was better than that for the white quail (2900 Kcal/Kg diet), and the interaction effect was stronger on the desert strain with 2900 Kcal than the white strain. **Keywords:** Metabolism Energy, Productive Performance, Quail

1. Introduction

In poultry nutrition, energy is divided into gross energy, digestible energy, metabolism energy (ME), and net energy. The ME for feedstuff used in poultry nutrition is the basic energy (1). The main factor that affects feed intake is ME in the ration. The grower quail stops the intake of the ration when it gets the requirements of ME so that the ration is balanced in all elements and compounds. Some researchers studied the best ME levels in the Japanese quail rations. They found that there were significant differences in body weight when they used different ME levels on the grower of Japanese quail rations, while Hasanien (2), Muniz, Barreto (3), as well as Muniz, Barreto (4), did not find any significant effects on body weight when they used different ME levels on Japanese quail rations. On the other hand, some other researchers studied the effect on Japanese quail strains, such as Bughio, Jatoi (5), as well as Al-Kafajy, Al-Shuhaib (6), who found significant differences in body weight when they used different strains of Japanese quail, while Ahmad, Mehmood (7).

2. Materials and Methods

Two strains of Japanese quail (Coturnix coturnix japonica), including 250 birds of desert and 250 birds of white color, all one day old and unsexed, were divided into five treatment groups, each containing 50 replicates. This treatment included five levels of ME levels, including 2700, 2800, 2900, 3000, and 3100

Kcal/Kg diet. The study included one stage (the growth stage) from day 1 to day 42 of birds' age. It was completed at the Department of Animal Production, University of Mosul, Mosul, Iraq. Iron cages sized $50 \times 50 \times 50$ cm were used to house the birds. The feed

contained approximately 24% crude protein. The nutrient requirements of the grower quail and the chemical composition of rations used in this study were formulated according to the National Research Council (8) tabulated in table 1.

		Energy	/ Level (Kcal./K	g diet)	
Ingredients	T1	T2	Т3	T4	T5
	2700	2800	2900	3000	3100
Soybean meal	28.40	29.10	30.20	31.40	32.50
Yellow corn	10	16.20	24	34	42
Wheat	46.40	40	30.70	19.30	10
Wheat bran	5.50	3.90	3	2	1
Sunflower oil	0.50	1.60	2.90	4.10	5.30
Protein concentrate	8	8	8	8	8
Limestone	0.50	0.50	0.50	0.50	0.50
Di Calcium phosphate	0.20	0.20	0.20	0.20	0.20
Vit. Min. premix	0.25	0.25	0.25	0.25	0.25
Common salt	0.25	0.25	0.25	0.25	0.25
Total	100	100	100	100	100
	Cł	nemical Analysis	6		
ME(kcal/kg diet)	2700	2801	2902	3000	3100
Crude protein %	24.06	24.01	24.02	24.01	24.04
ME / P ratio	112.2	116.7	120.8	124.9	129
Ether extract %	2.76	3.89	5.23	6.50	7.76
crude fiber %	4.45	4.23	4.09	3.95	3.81
Calcium %	0.99	0.99	1	1	1
A. phosphorus %	0.47	0.46	0.46	0.45	0.44
Lysine %	1.32	1.32	1.35	1.36	1.38
Methionine %	0.56	0.56	0.57	0.56	0.56
Linoleic acid %	1.14	1.86	2.69	3.52	4.31

Table 1. Chemical composition of experimental diets in this research (1-42 days)

The water intake and the feed conversion ratio were calculated as stated in Kesab (9), with the following equations: 1) water intake (ml/bird)=the added water (ml/bird)-the remaining water (ml/bird) and 2) water conversion ratio (ml/gm weight gain)=water intake (ml/bird)/weight gain (gm/bird). At the end of the research (day 42), the birds were slaughtered, and the characteristics of their carcasses were recorded as reported previously (9). The sensory evaluation (tenderness, juiciness, flavor, and acceptability) of the Japanese quail breast meat was carried out according to Kesab (9). The economic calculations of the search parameters were calculated on day 42 to produce 1 Kg of live weight, depending on Kesab (9). The Statistical Analysis Software (SAS, 2002) was used to statistically analyze the study data for the factorial and two-factor

experiment. The study followed a complete random design. The difference between the means was tested by Duncan (10) multi-range test. Finally, the standard error of each transaction was measured.

3. Results and Discussion

The results in table 2 showed significant differences ($P \le 0.05$) caused by the strain, ME levels, and the interaction factor on body weight and weight gain. The strain factor significantly affected the body weight and weight gain of the desert quail. These results agree with the findings of Al-Fleeh (11). The most significant effects on body weight and weight gain were caused by the T3 (2900 Kcal/Kg diet) ME level. The interaction factor also caused significant differences ($P \le 0.05$) in body weight and weight gain in T3 ME level (the

interaction between desert quail and 2900 Kcal ME). However, the three factors did not significantly affect mortality percentages.

Table 3 showed significant differences ($P \le 0.05$) in feed conversion ratio, water intake, and water conversion ratio caused by the strain factor; however, the difference caused in feed intake was not significant. Significant differences ($P \le 0.05$) were caused by the strain effect on the desert quail in feed conversion ratio and water intake. As for the effect of ME levels, the T1 (2700 Kcal) ME level had the strongest effect on feed intake and water intake, followed by the T2 (2880 Kcal) ME level. On the other hand, T3 (2900 Kcal), followed by T4 (3000 Kcal) ME levels had the strongest effect on the feed conversion ratio. In the interaction, significant differences ($P \le 0.05$) in feed intake were caused by T6 and T7 ME levels, while significant differences in water intake were caused by T7 ME level. The T3 ME level recorded the best feed conversion ratio.

Table 4 shows significant effects ($P \le 0.05$) of the three factors on protein conversion ratio and ME conversion ratio. The strain effect was the most significant on protein conversion ratio and ME conversion ratio in the desert quail. Regarding the ME levels, the strongest effect on protein intake was in T1 and T2, and on protein conversion ratio and ME conversion ratio, it was in T3. The interaction results show the best protein and ME conversion ratios for T3 ME level (desert quail with 2900 Kcal).

 Table 2. Effect of treatments and interaction, effect on body weight, weight gain, growth rate, and mortality percentage in the research (1-42 days)

Treatments		Body weight (g/bird)	Weight gain (g/bird)	Growth rate (%)	Mortality (%)					
	Strain effect									
Desert	quail	193.03 ±3.35 A	185.58 ±3.36 A	185.14 ± 1.65	0.40 ± 0.40					
White	quail	185.03 ±1.87 B	177.65 ±1.87 B	184.65 ±2.13	0.80 ± 0.54					
		Metabolism	energy levels effect (Kc	al./Kg) :						
270	00	186.95 ±1.63 BC	179.56 ±1.63 BC	184.79 ±1.75	0 ± 0					
280	00	185.73 ±2.97 BC	178.31 ±2.98 BC	184.62 ± 1.33	0 ± 0					
290	00	198.60 ±6.14 A	191.20 ±6.12 A	185.63 ± 2.08	0 ± 0					
300	00	193.33 ±3.70 AB	185.92 ±3.70 AB	185.23 ±0.96	1 ± 1					
310	00	180.53 ±4.12 C	180.53 ±4.12 C 173.11 ±4.18 C		2 ±1.26					
		Interaction: Strain >	< Metabolism energy lev	vels (Kcal./Kg) :						
	2700	186.48 ±3.02 BC	179.04 ±3 BC	184.65 ± 1.27	0 ±0					
Desert	2800	188.71 ±3.51 BC	181.24 ±3.55 BC	184.77 ±0.90	0 ± 0					
Desert	2900	209.67 ±7.01 A	202.22 ±7.03 A	186.27 ± 3.12	0 ± 0					
quan	3000	197.55 ±3.27 AB	190.13 ±3.31 AB	185.51 ± 1.88	2 ±2					
	3100	182.72 ±8.46 BC	175.27 ±8.48 BC	184.32 ± 1.51	0 ± 0					
	2700	187.42 ±1.99 BC	180.07 ±2.03 BC	184.90 ±2.35	0 ± 0					
White	2800	182.75 ±4.79 BC	175.37 ±4.81 BC	184.46 ± 2.65	0 ± 0					
	2900	187.52 ±4.10 BC	180.17 ±4.06 BC	184.90 ± 2.02	0 ± 0					
quan	3000	189.11 ±5.59 BC	181.71 ±5.60 BC	184.93 ± 1.12	0 ± 0					
	3100	178.33 ±2.90 C	170.94 ±2.90 C	184.08 ± 0.87	4 ±4					

A,c: Mean in the same column with no common superscripts differ significantly (P < 0.05)

Treatments		Feed intake (g/bird)	Feed conversion ratio (gm: gm gain)	Water intake (ml/bird)	Water conversion ratio (ml: gm gain)				
	Strain effect								
Desert	quail	688.49 ±10.37	3.71 ±0.11 B	1749.20 ±33.98 B	9.43 ±0.18 B				
White	quail	714.84 ± 13.92	4.02 ±0.09 A	1878.26 ±32.57 A	10.57 ±0.25 A				
		Metaboli	ism energy levels effect (Kcal./Kg) :					
27	00	742.56 ±16.29 A	4.14 ±0.12 A	1933.84 ±59.25 A	10.77 ±0.34 A				
28	00	740.36 ±13.42 A	4.15 ±0.11 A	1945.71 ±45.05 A	10.91 ±0.81 A				
29	00	669.42 ±19.17 B	3.50 ±0.17 B	1680.80 ±31.14 B	8.79 ±0.30 B				
3000		685.33 ±16 B	3.69 ±0.13 B	1770.62 ±21.91 B	9.52 ±0.25 B				
3100		670.67 ±15.23 B	670.67 ±15.23 B 3.87 ±0.07 AB 1737.69 ±35.58 B		9.99 ±0.29 AB				
		Interaction: Stra	ain × Metabolism energy	v levels (Kcal./Kg) :					
	2700	722.88 ±13.68 AB	4.04 ±0.22 AB	1870.48 ±115.02 BC	10.45 ±0.41 AB				
Desert	2800	718.37 ±4.90 AB	3.96 ±0.06 AB	1859.13 ±32.38 C	10.26 ±0.35 AB				
Desert	2900	666.27 ±25.89 B	3.29 ±0.23 C	1620.65 ±17.22 D	8.01 ±0.16 C				
quan	3000	$680.08 \pm 10.52 \text{ AB}$	3.58 ±0.08 BC	1733.33 ±16.93 CD	9.12 ±0.23 BC				
	3100	$654.84 \pm 7.87 \text{ B}$	3.74 ±0.24 ABC	1662.43 ±3.58 D	9.48 ±0.33 ABC				
	2700	762.23 ±21.10 A	4.23 ±0.11 A	1997.20 ±19.36 AB	11.09 ±0.18 A				
White	2800	762.34 ±20.91 A	4.35 ±0.23 A	2032.29 ±40.06 A	11.59 ±0.18 A				
white	2900	672.56 ±20.19 B	3.73 ±0.22 ABC	1740.94 ±30.58 CD	9.66 ±0.18 ABC				
quan	3000	690.58 ±29.97 AB	3.80 ±0.27 ABC	1807.90 ±26.90 C	9.95 ±0.18 ABC				
	3100	686.49 ±29.12 AB	4.02 ±0.23 AB	1812.95 ±25.58 C	10.61 ±0.18 AB				

 Table 3. Effect of treatments energy levels and interaction on feed intake, feed conversion ratio, and water intake in the research (1-42 days)

a,c: Mean in the same column with no common superscripts differ significantly (P<0.05)

 Table 4. Effect of treatments and interaction on Protein intake, Protein conversion ratio, ME intake, and ME conversion ratio in the research (1-42 days)

Treatments		Protein intake (g/bird)	Protein conversion ratio (g: g gain)	ME intake (Kcal./bird)	ME conversion ratio (Kcal. : g gain)				
	Strain effect								
Desert	quail	165.43 ± 2.81	0.89 ±0.02 B	1993.54 ±26.17	10.74 ±0.29 B				
White	quail	171.76 ±3.43	0.97 ±0.02 A	2068.99 ± 32.45	11.65 ±0.27 A				
		Metab	olism energy levels effect ((Kcal./Kg) :					
270	00	178.66 ±4.24 A	1 ±0.02 A	2004.90 ±47.61	11.17 ±0.33 AB				
280	00	177.76 ±3.22 A	1 ±0.02 A	2073.73 ±37.13	11.63 ±0.31 A				
290	00	$160.80 \pm 4.60 \text{ B}$	$0.84 \pm 0.04 \text{ B}$	1942.65 ±55.63	10.16 ±0.51 B				
300	00	164.55 ±3.84 B	±3.84 B 0.89 ±0.03 AB 2055.99 ±		11.06 ±0.44 AB				
3100		161.23 ±2.73 B	0.93 ±0.03 AB 2079.06 ±47.24		12.01 ±0.48 A				
		Interaction: St	train × Metabolism energy	v levels (Kcal./Kg) :					
	2700	173.92 ±6.46 AB	0.97 ±0.05 AB	1951.78 ±72.54	10.90 ±0.59 AB				
Decent	2800	172.48 ±1.17 AB	0.95 ±0.01 ABC	2012.15 ±13.75	11.10 ±0.16 AB				
Desert	2900	160.04 ±8.84 B	0.79 ±0.06 C	1933.52 ± 106.83	9.56 ±0.82 B				
quali	3000	163.29 ±2.93 AB	0.86 ±0.02 BC	2040.24 ± 36.63	10.73 ±0.23 AB				
	3100	157.42 ±1.89 B	0.90 ±0.05 ABC	2030 ± 24.41	11.58 ±0.68 AB				
	2700	183.39 ±5.07 A	$1.02 \pm 0.02 \text{ AB}$	2058.02 ± 56.97	11.43 ±0.32 AB				
White	2800	183.04 ±5.02 A	1.04 ±0.05 A	2135.31 ±58.56	12.18 ±0.65 A				
quail	2900	161.55 ±4.85 B	0.90 ±0.03 ABC	1951.77 ±58.60	10.83 ±0.42 AB				
	3000	165.81 ±7.19 AB	0.91 ±0.06 ABC	2071.74 ±89.91	11.40 ±0.82 AB				
	3100	165.03 ±5.58 AB	$0.97 \pm 0.05 \text{ AB}$	2128.12 ±46.26	12.45 ±0.72 A				

a,c: Mean in the same column with no common superscripts differ significantly (P < 0.05)

Table 5 shows the significant effects ($P \le 0.05$) of the three factors on carcass weight. The strain factor had the strongest effect on the desert quail in the T3 ME level, and the interaction between strain and ME levels was in the T3 group. The T5 ME level and the interaction factors had a significant effect ($P \le 0.05$) on the edible giblet percentage. The results did not record any significant effects on dressing percentage caused

by the three factors (Tables 6 and 7).

Table 8 shows the economic efficiency of producing 1 Kg live weight of grower quail in this study. The results showed that the desert quail has the best net revenue, compared to the white quail, and that T3 (2900 Kcal) had the best net revenue, compared to other ME levels, as the results of interaction for T3 (desert quail and 2900 Kcal) has best net revenue.

 Table 5. Effect of treatments and interaction on carcass weight, dressing percentage, and edible giblets percentage in the research (42 days)

Treatme	ents	Carcass weight (g/bird)	Dressing (%)	Breast (%)	Edible giblets (%)					
	Strain effect									
Desert q	uail	130.65 ±2.63 A	71.10 ±0.63	31.82 ±1.39	5.77 ±0.20					
White qu	uail	118.57 ±2.03 B	68.89 ±0.80	31.51 ±1.17	5.50 ±0.15					
		Metabolism energy	gy levels effect (Kca	l./Kg) :						
2700		121.92 ±3.44 B	69.17 ±1.45	31.59 ±1.35	5.16 ±0.35 B					
2800		122.42 ±3.62 B	69.65 ±0.78	31.63 ±2.47	5.61±0.16 AB					
2900		134.48 ±5.24 A	71.46 ±1.27	32.04 ± 1.06	5.57 ±0.13 AB					
3000		125.65 ±3.88 AB	69.93 ±1.48	31.94 ±0.97	5.74 ±0.35 AB					
3100		118.59 ±3.43 B	69.77 ±0.95	31.14 ±0.77	6.12 ±0.30 A					
	Ι	nteraction : Strain × Me	tabolism energy lev	els(Kcal./Kg) :						
	2700	127.54 ±5.83 B	70.24 ±1.20	31.95 ±2.23	$5.25\pm0.57~AB$					
Desort	2800	128.27 ±10.40 B	70.85 ±1.02	31.88 ±1.51	5.52 ±0.25 AB					
guail	2900	144.87 ±9.29 A	72.85 ±1.55	32.19 ±1.06	5.70 ±0.25 AB					
quali	3000	131.89 ±7.64 AB	71.61 ±0.25	32.03 ±0.97	$5.88 \pm 0.44 \text{ AB}$					
	3100	120.68 ±8.36 B	69.93 ±1.73	31.07 ±1.25	6.49 ±0.25 A					
	2700	116.30 ±10.43 B	68.10 ±2.87	31.22 ±0.38	5.06 ±0.46 B					
W 71-:+-	2800	116.57 ±10.99 B	68.44 ± 3.64	31.37 ±1.47	5.69 ±0.25 AB					
winte	2900	124.08 ±3.83 B	70.07 ±0.53	31.90 ±0.67	5.43 ±0.22 AB					
quan	3000	119.39 ±8.13 B	68.25 ±1.70	31.85 ±1.11	5.59 ±0.54 AB					
	3100	116.50 ±4.17 B	69.60 ± 1.76	31.20 ±0.85	5.75 ±0.30 AB					

a,c: Mean in the same column with no common superscripts differ significantly (P<0.05)

Treatments		Tenderness Juiciness		Flavor	Acceptability			
Strain effect								
Desert q	uail	2.76 ± 0.05	2.66 ± 0.06	2.73 ±0.07	2.71 ±0.09			
White qu	uail	2.83 ± 0.08	2.76 ± 0.08	2.80 ± 0.08	2.80 ± 0.06			
	Metabolism energy levels effect (Kcal./Kg) :							
2700		2.91 ±0.08	2.81 ±0.10	2.88 ±0.10	2.94 ±0.11			
2800		2.94 ±0.09	2.91 ±0.06	2.82 ± 0.06	2.88 ±0.09			
2900		2.85 ± 0.07	2.72 ±0.14	2.78 ± 0.06	2.75 ±0.11			
3000	3000		2.60 ± 0.06	2.72 ± 0.07	2.63 ±0.07			
3100	3100		±0.06 2.54 ±0.04 2.63 ±0		2.60 ± 0.08			
	Int	eraction: Strain × N	Metabolism energy l	evels (Kcal./Kg) :				
	2700	2.88 ±0.09	2.81 ±0.07	2.81 ±0.09	2.94 ±0.10			
Desert	2800	2.94 ±0.10	2.81 ±0.12	2.69 ±0.12	2.81 ±0.09			
Desett	2900	2.81 ±0.08	2.69 ±0.09	2.75 ± 0.07	2.69 ±0.07			
quaii	3000	2.69 ±0.09	2.56 ± 0.07	2.75 ± 0.07	2.56 ± 0.06			
	3100	2.50 ± 0.07	2.44 ±0.05	2.63 ± 0.06	2.56 ± 0.05			
	2700	2.94 ±0.12	2.81 ±0.13	2.94 ±0.10	2.94 ±0.10			
White	2800	2.94 ±0.12	3.00 ± 0.11	2.94 ±0.10	2.94 ±0.10			
winte	2900	2.88 ±0.13	2.75 ±0.10	2.81 ±0.09	2.81 ±0.07			
quaii	3000	2.75 ±0.11	2.63 ±0.09	2.69 ± 0.08	2.69 ±0.09			
	3100	2.63 ±0.10	2.63 ±0.09	2.63 ± 0.05	2.63 ± 0.07			

Table 6. Effect of treatments and interaction on some sensory meat tastes in the research (42 days)

Table 7. Effect of treatments and interaction on some biochemical traits of blood in the research (1-42 days)

Treatments		Total Protein (gm/100ml)	Albumin (gm/100ml)	Globulin (gm/100ml)	Triglycerides (mg/100ml)	Total cholesterol (mg/100ml)				
	Strain effect									
Desert quail 4.38 ±0.08 2.52 ±0.05 A 1.86 ±0.02 625.20 ±7.05 A 182.23:						182.23±3.49				
White c	quail	4.26 ± 0.09	$2.30 \pm 0.04 \text{ B}$	1.96 ± 0.02	608.28 ±5.95 B	175.01±2.67				
		Ν	letabolism energy leve	els effect(Kcal./H	Kg) :					
270	0	4.26 ±0.04	2.33 ±0.03 BC	1.93 ±0.03	587.50 ±5.15 C	171.32±3.83 B				
280	0	4.24 ± 0.08	$2.27 \pm 0.06 \text{ C}$	1.97 ± 0.03	595.34± 5.18 C	172.66 ±4.22 AB				
2900	0	4.29 ±0.15	2.37 ±0.07 BC	1.92 ± 0.05	614.17± 5.90 B	$177.45 \pm 4.15 \text{ AB}$				
300	0	4.35 ±0.06	$2.46 \pm 0.07 \text{ B}$	1.89 ± 0.04	$627.91 \pm 5.46 \text{ B}$	$184.07 \pm 5.77 \text{ AB}$				
3100		4.46 ±0.23	$2.62 \pm 0.07 \text{ A}$	2.62 ±0.07 A 1.84±0.03		187.60±5.33 A				
		Interactio	on : Strain × Metaboli	sm energy levels	s(Kcal./Kg) :					
	2700	4.32 ±0.07	2.38 ±0.04 BCD	1.94 ±0.05	594.19 ±6.94 A	173.22 ±6.78				
Desert	2800	4.17 ±0.14	2.43 ±0.04 BCD	1.74 ± 0.05	598.92 ±9.17 DE	175.62 ± 4.84				
Desert	2900	4.45 ± 0.06	2.49 ±0.08 BC	1.96 ± 0.06	625.42 ±5.19 BC	181.15 ± 7.34				
quan	3000	4.41 ±0.10	2.58 ±0.08 AB	1.83 ± 0.06	635.65 ±6.51 BC	189.81 ±7.94				
	3100	4.55 ± 0.09	2.73 ±0.11 A	1.82 ± 0.06	$671.80 \pm 7.66 \text{ A}$	191.37 ± 4.54				
	2700	4.20 ±0.05	2.28 ±0.04 DE	1.92 ±0.05	580.81 ±6.79 E	169.42 ±4.47				
White	2800	4.30 ± 0.06	2.11 ±0.04 E	2.19 ± 0.04	591.76 ±5.69 E	169.70 ± 7.36				
white	2900	4.12 ±0.15	2.25 ±0.06 DE	1.87 ± 0.08	602.92 ±9.31 DE	173.75 ±4.25				
quali	3000	4.29 ±0.05	2.34 ±0.07 CD	1.95 ± 0.07	620.17 ±7.56 CD	178.33 ± 8.46				
	3100	4.37 ±0.36	2.50 ±0.06 BC	1.87 ±0.03	$645.74 \pm 7.68 \text{ B}$	183.83 ± 3.46				

a,c: Mean in the same column with no common superscripts differ significantly (P < 0.05)

Treatm	ents	Feed intake cost	Other cost	Total cost	Revenue	Net Revenue	%Net revenue: Total costs			
	Strain effect :									
Desert o	uail	2437	2628	5065	9000	3935	77.69			
White q	uail	2472	2652	5124	9000	3876	75.64			
	Metabolism energy levels effect (Kcal./Kg) :									
2700)	2649	2766	5415	9000	3585	66.20			
2800)	2522	2666	5188	9000	3812	73.48			
2900)	2235	2501	4736	9000	4264	90.03			
3000)	2396	2588	4984	9000	4016	80.58			
3100)	2472	2682	5154	9000	3846	74.62			
		Interaction: S	train × Me	tabolism en	ergy levels (Kc	al./Kg) :				
	2700	2833	2891	5724	9000	3276	57.23			
Desert	2800	2410	2623	5033	9000	3967	78.82			
Desert	2900	2081	2361	4442	9000	4558	102.61			
quan	3000	2225	2557	4782	9000	4218	88.21			
	3100	2638	2709	5347	9000	3653	68.32			
	2700	2465	2641	5106	9000	3894	76.26			
White quail	2800	2634	2709	5343	9000	3657	68.44			
	2900	2389	2640	5029	9000	3971	78.96			
	3000	2567	2618	5185	9000	3815	73.58			
	3100	2306	2654	4960	9000	4040	81.45			

Table 8. Effect of treatments and interaction on economic efficiency in the research (1-42 days)

Iraqi Dinar/Kg live weight

The desert quail strain recorded the best net revenue and better performance traits, compared to the white quail. In addition, the T3 ME level recorded the best net revenue and better performance traits than other ME levels, and the interaction T3 has the best net revenue and best performance traits in this study.

Authors' Contribution

Study concept and design: Y. G. K.

Acquisition of data: R. N. W.

Analysis and interpretation of data: M. M. K.

Drafting of the manuscript: R. N. W.

Critical revision of the manuscript for important intellectual content: R. N. W.

Statistical analysis: Y. G. K.

Administrative, technical, and material support: M. M. K.

Ethics

All the ethical procedures were approved by the ethics committee of the University of Mosul, Mosul, Iraq.

Conflict of Interest

The authors declare that they have no conflict of interest.

Acknowledgment

The authors are very grateful to the University of Mosul/College of Agriculture and Forestry for their provided facilities, which helped to improve the quality of this study.

References

- 1. Ibrahim NS, El-Sayed MA, Assi HAM, Enab A, Abdel-Moneim A-ME. Genetic and physiological variation in two strains of Japanese quail. J Genet Eng Biotechnol. 2021;19(1):1-12.
- 2. Hasanien OAM. Effects of Dietary Protein, Energy and Lysine Intake on Growth Performance and Carcass Characteristics of Growing Japanese Quails. Asian J Poult Sci. 2015.
- 3. Muniz JCL, Barreto SLdT, Mencalha R, Viana GdS, Reis RdS, Ribeiro CLN, et al. Metabolizable energy levels for meat quails from 15 to 35 days of age. Cienc Rural. 2016;46:1852-7.

- 4. Muniz J, Barreto S, Viana G, Mencalha R, Reis R, Hannas M, et al. Metabolizable energy levels for meat-type quails at starter phase. Braz J Poult Sci. 2018;20:197-202.
- 5. Bughio E, Jatoi A, Hussain J, Jaspal M, Mehmood S, Ishaq H, et al. Comparative study of carcass traits in four strains of Japanese quail (Coturnix japonica) at 3 to 6 weeks of age. Sarhad J Agric. 2020;36(3):979-84.
- Al-Kafajy FR, Al-Shuhaib MBS, Al-Jashami GS, Al-Thuwaini TM. Comparison of three lines of Japanese quails revealed a remarkable role of plumage color in the productivity performance determination. J World Poult Res. 2018;8(4):111-9.
- 7. Ahmad S, Mehmood S, Javed K, Mahmud A, Usman M, Rehman A, et al. Different selection strategies for the improvement of the growth performance and

carcass traits of Japanese quails. Braz J Poult Sci. 2018;20:497-506.

- 8. Council N-NR. Nutrient requirements of poultry. National Academy Press Washington; 1994.
- Kesab YG, Khaleel MM, Waleed RN. Effect of using millet seeds on nutrition of two strains of Japanese quail during growth and eggs production stages. Pp: 270-288. In The 3rd International Conference of (Environmental and Agricultural Status in the Middle East) 2020 Jul (pp. 14-16).
- 10. Duncan DB. Multiple range and multiple F tests. Biometrics. 1955;11(1):1-42.
- 11. Al-Fleeh R. Effect of addition feenel seeds on productive traits of two breeds of japanes quail. JKU. 2018;16(3).