
Improving seed germination, growth, and biochemical characteristics of corn seedling via the application of silver nanoparticles synthesized from fennel (Foeniculum vulgare) | ||
علوم و فناوری بذر ایران | ||
Article 2, Volume 13, Issue 1 - Serial Number 33, March 2024, Pages 15-36 PDF (908.69 K) | ||
Document Type: Original Article | ||
DOI: 10.22092/ijsst.2023.361213.1471 | ||
Authors | ||
Mehdi Afrouz1; Parisa Sheikhzadeh* 2 | ||
1Ph.D Student of Crop Plants Physiology, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
2Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
Abstract | ||
In order to evaluate the effect of Ag synthesized from fennel on seed germination, growth and biochemical characteristics of hybrid single cross 704 corn seedlings, an experiment was carried out in a randomized complete block design with three replications at the University of Mohaghegh Ardabili in 2021. Experimental factors included synthesized Ag nanoparticles (0, 0.001, 0.1, 0.25, and 0.75 mg L-1) and the application methods of Ag nanoparticles (seed priming and no priming). The results showed that in both methods of nanoparticle application, with the use of different concentrations of Ag nanoparticles, there was a significant increase in the percentage and speed of germination, average daily germination, germination simultaneity index, strength index, length and dry weight of corn seedlings and a decrease in the average germination time, D50 of corn seeds were germinated. Among the nanoparticle application methods, priming seeds with 0.001 mg L-1 and adding 0.1 mg L-1 Ag nanoparticles had a greater effect on improving germination, seedling growth, and increasing seed vigor index. By adding 0.1 mg L-1 of Ag nanoparticles to no priming, it resulted in the highest germination%, synchronicity index, mean daily germination and the lowest mean germination time. The use of different concentrations of Ag nanoparticles in both application methods increased the activity of catalase, peroxidase, polyphenol oxidase and proline content compared to the control treatment, the use of a concentration of 0.001 mg L-1 of Ag nanoparticles as a priming can be suggested to improve seed germination, growth, and biochemical characteristics of corn seedlings. | ||
Keywords | ||
Seed pretreatment; Green synthesis; Germination rate; Antioxidant enzymes activity | ||
References | ||
Abbasifar, A., Shahrabadi, F., & Valizadeh Kaji, B. (2020). Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. Journal of Plant Nutrition, 43(8), 1104–1118. https://doi.org/10.1080/01904167.2020.1724305 Abou-Zeid, H. M., & Moustafa, Y. (2014). Physiological and cytogenetic responses of wheat and barley to silver nanopriming treatment. International Journal of Applied Biology and Pharmaceutical Technology, 5(3), 265–278. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3 Afrouz, M., & Sheikhzadeh, P. (2023). Improving seed germination, growth, and biochemical characteristics of corn seedlings via the application of iron oxide nanoparticles synthesized from oregano (Origanum vulgare). Iranian Journal of Seed Science and Technology, 12(1), 41–60. https://doi.org/10.22092/ijsst.2022.359765.1447. [In Persian] Afsheen, S., Naseer, H., Iqbal, T., Abrar, M., Bashir, A., & Ijaz, M. (2020). Synthesis and characterization of metal sulphide nanoparticles to investigate the effect of nanoparticles on germination of soybean and wheat seeds. Materials Chemistry and Physics, 252, 123216. https://doi.org/10.1016/j.matchemphys.2020.123216 Ahmadi Nouraldinvand, F., Seyed Sharifi, R., Siadat, S. A., & Khalilzadeh, R. (2021). Effect of water limitation and application of bio-fertilizer and nano-silicon on yield and some biochemical traits of wheat. Cereal Research, 10(4), 285–298. https://doi.org/10.22059/jci.2022.333768.2639. [In Persian] Alshehddi, L. A. A., & Bokhari, N. (2020). Influence of gold and silver nanoparticles on the germination and growth of Mimusops laurifolia seeds in the South-Western regions in Saudi Arabia. Saudi Journal of Biological Sciences, 27(1), 574–580. https://doi.org/10.1016/j.sjbs.2019.11.013 Bano, A. (2020). Interactive effects of Ag-nanoparticles, salicylic acid, and plant growth-promoting rhizobacteria on the physiology of wheat infected with yellow rust. Journal of Plant Pathology, 102(4), 1215–1225. https://doi.org/10.1007/s42161-020-00626-y Bates, L. S., Walderen, R. D., & Taere, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207. https://doi.org/10.1007/BF00018060 Belava, V. N., Panyuta, O. O., Yakovleva, G. M., Pysmenna, Y. M., & Volkogon, M. V. (2017). The effect of silver and copper nanoparticles on the wheat—Pseudocercosporella herpotrichoides pathosystem. Nanoscale Research Letters, 12(1), 1–10. https://doi.org/10.1186/s11671-017-2028-6 Bhavyasree, P. G., & Xavier, T. S. (2020). Green synthesis of copper oxide/carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity. Heliyon, 6, e03323. https://doi.org/10.1016/j.heliyon.2020.e03323 Chance, B., & Maehly, A. C. (1955). Assay of catalase and peroxidase. Methods in Enzymology, 2, 764–775. https://doi.org/10.1016/S0076-6879(55)02300-8 Chang, C. J., & Kao, C. H. (1998). H2O2 metabolism during senescence of rice leaves: Changes in enzyme activities in light and darkness. Plant Growth Regulation, 25(1), 11–15. https://doi.org/10.1023/A:1005903403926 Choudhury, R., Majumder, M., Roy, D. N., Basumallick, S., & Misra, T. K. (2016). Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods. International Nano Letters, 6(3), 153–159. https://doi.org/10.1007/s40089-016-0181-z Daniels, J. K., Caldwell, T. P., Christensen, K. A., & Chumanov, G. (2006). Monitoring the kinetics of Bacillus subtilis endospore germination via surface-enhanced Raman scattering spectroscopy. Analytical Chemistry, 78(5), 1724–1729. https://doi.org/10.1021/ac052009v Doğaroğlu, Z. G., & Köleli, N. (2017). TiO2 and ZnO nanoparticles toxicity in barley (Hordeum vulgare L.). Clean – Soil, Air, Water, 45(11), 1700096. https://doi.org/10.1002/clen.201700096 Ellis, R. H., & Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9, 373–409. El-Temsah, Y. S., & Joner, E. J. (2012). Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27(1), 42–49. https://doi.org/10.1002/tox.20610 Esper Neto, M., Britt, D. W., Jackson, K. A., Coneglian, C. F., Inoue, T. T., & Batista, M. A. (2021). Early growth of corn seedlings after seed priming with magnetite nanoparticles synthetized in easy way. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 71(2), 91–97. https://doi.org/10.1080/09064710.2020.1852304 Finch-Savage, W. E., & Footitt, S. (2017). Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. Journal of Experimental Botany, 68(4), 843–856. https://doi.org/10.1093/jxb/erw477 Gupta, S. D., Agarwal, A., & Pradhan, S. (2018). Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicology and Environmental Safety, 161, 624–633. https://doi.org/10.1016/j.ecoenv.2018.06.023 Hazrati, R., Zare, N., Asghari, R., Sheikhzadeh, P., & Johari-Ahar, M. (2022). Biologically synthesized CuO nanoparticles induce physiological, metabolic, and molecular changes in the hazel cell cultures. Applied Microbiology and Biotechnology, 106(18), 6017–6031. https://doi.org/10.1007/s00253-022-12107-6 Hazrati, R., Zare, N., Asghari-Zakaria, R., & Sheikhzadeh, P. (2023). Green synthesized Ag nanoparticles stimulate gene expression and paclitaxel production in Corylus avellana cells. Applied Microbiology and Biotechnology, 107(19), 5963–5974. https://doi.org/10.1007/s00253-023-12683-1 Hunter, E. A., Glasbey, C. A., & Naylor, R. E. L. (1984). The analysis of data from germination tests. Journal of Agricultural Science, 102(1), 207–213. https://doi.org/10.1017/S0021859600041642 Iqbal, S., Farid, M., Zubair, M., Asam, Z. U. Z., Ali, S., Abubakar, M., Farid, S., & Rizwan, M. (2022). Efficacy of various amendments for the phytomanagement of heavy metal contaminated sites and sustainable agriculture: A review. In M. Hasanuzzaman, G. Jalal Ahammed, & K. Nahar (Eds.), Managing plant production under changing environment (pp. 239–272). Springer. https://doi.org/10.1007/978-981-16-5059-8_9 Itroutwar, P. D., Kasivelu, G., Raguraman, V., Malaichamy, K., & Sevathapandian, S. K. (2020). Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatalysis and Agricultural Biotechnology, 29, 101778. https://doi.org/10.1016/j.bcab.2020.101778 Kannan, R., Arumugam, R., Ramya, D., Manivannan, K., & Anantharaman, P. (2013). Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Applied Nanotechnology, 3(3), 229–233. https://doi.org/10.1007/s13204-012-0125-5 Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57(2), 315–319. https://doi.org/10.1104/pp.57.2.315 Lahuta, L. B., Szablińska-Piernik, J., Głowacka, K., Stałanowska, K., Railean-Plugaru, V., Horbowicz, M., Pomastowski, P., & Buszewski, B. (2022). The effect of bio-synthesized silver nanoparticles on germination, early seedling development, and metabolome of wheat (Triticum aestivum L.). Molecules, 27(7), 2303. https://doi.org/10.3390/molecules27072303 Mingyu, S., Fashui, H., Chao, L., Xiao, W., Xiaoqing, L., Liang, C., Fengqing, G., Fan, Y., & Zhongrui, L. (2007). Effects of nano-anatase TiO2 on absorption, distribution of light, and photoreduction activities of chloroplast membrane of spinach. Biological Trace Element Research, 118(2), 120–130. https://doi.org/10.1007/s12011-007-0006-z Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003 Mohammadi Sanjani, A., Hosseinzadeh, M., & Sorahi, M. (2021). The effect of silver nanoparticles treatment on some physiological and biochemical responses of safflower. Applied Biology, 33(4), 149–164. DOI:10.22051/jab.2020.31071.1365. [In Persian] Muhammad, I., Kolla, M., Volker, R., & Günter, N. (2015). Impact of nutrient seed priming on germination, seedling development, nutritional status and grain yield of maize. Journal of Plant Nutrition, 38(12), 1803–1821. https://doi.org/10.1080/01904167.2014.990094 Nawaz, S., & Bano, A. (2020). Effects of PGPR (Pseudomonas sp.) and Ag-nanoparticles on enzymatic activity and physiology of cucumber. Recent Patents on Food, Nutrition & Agriculture, 11(2), 124–136. https://doi.org/10.2174/2212798410666190716162340 Ocvirk, D., Špoljarević, M., Kristić, M., Hancock, J. T., Teklić, T., & Lisjak, M. (2021). The effects of seed priming with sodium hydrosulfide on drought tolerance of sunflower (Helianthus annuus L.) in germination and early growth. Annals of Applied Biology, 178(2), 400–413. https://doi.org/10.1111/aab.12658 Patiño-Ruiz, D., Sánchez-Botero, L., Tejeda-Benitez, L., Hinestroza, J., & Herrera, A. (2020). Green synthesis of iron oxide nanoparticles using Cymbopogon citratus extract and sodium carbonate salt: Nanotoxicological considerations for potential environmental applications. Environmental Nanotechnology, Monitoring & Management, 14, 100377. https://doi.org/10.1016/j.enmm.2020.100377 Rutkowski, M., Krzemińska-Fiedorowicz, L., Khachatryan, G., Bulski, K., Kołton, A., & Khachatryan, K. (2022). Biodegradable silver nanoparticles gel and its impact on tomato seed germination rate in in-vitro cultures. Applied Sciences, 12(5), 2722. https://doi.org/10.3390/app12052722 Saberbaghban, Z., Ahmadzadeh, M., & Haddadi, H. R. (2020). Effect of nano silver particles on seed germination indices of cotton (Sepid and Varamin) and maize (Single Cross 704) seeds and its effects on Xanthomonas smithii, a seed-borne pathogen of cotton. Iranian Journal of Seed Science and Technology, 8(2), 33-46. [In Persian] https://doi.org/10.22034/IJSST.2018.109046.1046 Savassa, S. M., Castillo-Michel, H., del Real, A. E. P., Reyes-Herrera, J., Marques, J. P. R., & Carvalho, H. W. (2021). Ag nanoparticles enhancing Phaseolus vulgaris seedling development: Understanding nanoparticle migration and chemical transformation across the seed coat. Environmental Science: Nano, 8(2), 493-501. https://doi.org/10.1039/D0EN00959H Sehnal, K., Hosnedlova, B., Docekalova, M., Stankova, M., Uhlirova, D., Tothova, Z., Kepinska, M., Milnerowicz, H., Fernandez, C., Ruttkay-Nedecky, B., & Nguyen, H. V. (2019). An assessment of the effect of green synthesized silver nanoparticles using sage leaves (Salvia officinalis L.) on germinated plants of maize (Zea mays L.). Nanomaterials, 9(11), 1550. https://doi.org/10.3390/nano9111550 Sharma, P., Bahatt, D., Zaidi, M. G. H., Saradhi, P. P., Khanna, P. K., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167(8), 2225-2233. https://doi.org/10.1007/s12010-012-9759-8 Shavalibor, A., & Esmailzadeh, S. (2019). The effect of silver nanoparticles synthesized by biological method on growth, physiological, and biochemical properties of Melissa officinalis L. Plant Process Functions, 8(32), 19-34. [In Persian] DOI: 20.1001.1.23222727.1398.8.32.11.9 Shukla, P., Chaurasia, P., Younis, K., Qadri, O. S., Faridi, S. A., & Srivastava, G. (2019). Nanotechnology in sustainable agriculture: Studies from seed priming to post-harvest management. Nanotechnology and Environmental Engineering, 4(1), 1-15. https://doi.org/10.1007/s41204-019-0058-2 Singh, Y., Kaushal, S., & Sodhi, R. S. (2020). Biogenic synthesis of silver nanoparticles using cyanobacterium Leptolyngbya sp. WUC 59 cell-free extract and their effects on bacterial growth and seed germination. Nanoscale Advances, 2(9), 3972-3982. https://doi.org/10.1039/D0NA00357C Smirnov, O., Kalynovskyi, V., Yumyna, Y., Zelena, P., Levenets, T., Kovalenko, M., Dzhagan, V., & Skoryk, M. (2022). Potency of phytosynthesized silver nanoparticles from Lathraea squamaria as an anticandidal agent and wheat seeds germination enhancer. Biologia, 77, 2715-2724. https://doi.org/10.1007/s11756-022-01117-4 Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24), 9473-9479. https://doi.org/10.1021/es901543g Sun, Q., Cai, X., Li, J., & Zheng, M. (2014). Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 226-231. https://doi.org/10.1016/j.colsurfa.2013.12.065 Swaminathan, A., Kalyani, K. B., Sudhagar, S., Bhuvaneswari, S. T., Nagalatha, T. L. S., Sumantran, V. N., & Chatterjee, S. (2021). Nitric oxide mitigates thalidomide-induced abnormalities during germination and development of fennel seeds. Toxicology Research, 10(4), 893-901. https://doi.org/10.1093/toxres/tfab071 Thuesombat, P., Hannongbua, S., Akasit, S., & Chadchawan, S. (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety, 104, 302-309. https://doi.org/10.1016/j.ecoenv.2014.03.022 Tong, X., Guo, N., Dang, Z., Ren, Q., & Shen, H. (2018). In vivo biosynthesis and spatial distribution of Ag nanoparticles in maize (Zea mays L.). IET Nanobiotechnology, 12(7), 987-993. https://doi.org/10.1049/iet-nbt.2017.0230 Vashisth, A., & Nagarajan, S. (2010). Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology, 167(2), 149-156. https://doi.org/10.1016/j.jplph.2009.08.011 Yasmeen, F., Razzaq, A., Iqbal, M. N., & Jhanzab, H. M. (2015). Effect of silver, copper, and iron nanoparticles on wheat germination. International Journal of Biosciences, 6(4), 112-117. https://doi.org/10.12692/ijb/6.4.112-5 Yin, L., Colman, B. P., McGill, B. M., Wright, J. P., & Bernhardt, E. S. (2012). Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLOS ONE, 7(10), e47674. https://doi.org/10.1371/journal.pone.0047674 Zari, H., Babak, P., & Asad, R. (2015). The effect of priming with nano-silver on agronomic traits of safflower cultivars. Journal of Essential Oil Bearing Plants, 18(5), 1148-1156. https://doi.org/10.1080/0972060X.2014.976664
| ||
Statistics Article View: 322 PDF Download: 306 |