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The purpose of the current study was to ascertain the 

comparative effects of compounds, copper (II) oxide 

nanoparticles (nCuO) and copper salt (CuCl2), on the 

genotoxicity and histopathology of goldfish (Carassius 

auratus) for acute exposures of 24, 48, 72, and 96 h 

(concentrations: 100, 150, 200, and 1, 1.5, 2 mg/L nCuO 

and CuCl2, respectively). The peripheral erythrocytes were 

obtained for that purpose from the caudal vein in each 

individual. The Comet assay and micronucleus test were 

used to evaluate genotoxicity, and gill tissues were 

prepared for histopathology. High levels of nCuO and 

CuCl2 concentrations and acute exposure (96-hour) 

increased the percentage of DNA in the comet tails, olive 

tail moments, and micronucleus counts showed genotoxic 

effects on exposed fish. Also, the gill tissue alterations 

were observed and changed as the lifting of the respiratory 

epithelium, hyperplasia of the lamellar epithelium, 

incomplete, and complete fusion of several lamellae, and 

hypertrophy. Genotoxicity for nCuO and CuCl2 was 

discovered to be a concentration and time-dependent 

phenomenon. In general, experimental groups showed 

significant impacts (p=0.05) on concentrations and 

exposure periods, which may contribute to understanding 

the mechanism of nCuO and CuCl2-induced genotoxicity 

in the fish. 

Article info 

 

Received: January 2024 

Accepted: April 2024 

Published: May 2024 

 

 

 

 

 

 

Copyright: © 2023 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license 

s/by/4.0/). 

http://www.jifo.ir/


486 Yavaş and Gülsoy, Comparative genotoxic and histopathological effects of copper nanoparticles and ... 

 

Introduction 

Water pollution is a global problem caused 

by anthropogenic activities such as 

industrial discharge, agricultural runoff, 

and urbanization, which endanger aquatic 

ecosystems and especially fish populations. 

Among numerous pollutants such as heavy 

metals, herbicides, and chemical 

compounds, oxidative stress has been 

identified as an important mechanism (Fuat 

Gulhan et al., 2012; Selamoglu et al., 2015; 

Caglar et al., 2019). This stress results from 

an imbalance between reactive oxygen 

species (ROS) production and antioxidant 

defenses activated by pollutants through 

direct ROS generation, enzyme stimulation 

and antioxidant system disruption. Fish 

respond to oxidative stress by altering 

enzyme activity, biomarker levels and gene 

expression, eliciting physiological 

adaptations and disease (Orun et al., 2005; 

Talas et al., 2008; Selamoglu, 2011; 

Kakoolaki et al., 2013; Talas et al., 2014).  

To maintain the long-term viability of 

aquatic ecosystems, mitigation techniques 

include environmental management, 

regulatory policy and multidisciplinary 

research. Aquatic products and animals are 

indispensable components of the human 

diet and play a crucial role in the global 

aquatic product industry, serving 

consumers worldwide. Therefore, 

safeguarding our aquatic environments 

against pollution is imperative due to its 

diverse environmental and ecological 

ramifications. The emissions of volatile 

organic substances and the contamination 

of water by oil chemicals and various 

hazardous agents pose significant threats to 

aquatic ecosystems and the organisms 

inhabiting them. Among these organisms, 

fish stand out as essential nutrients in the 

human diet and as a prominent commodity 

in the global aquatic product market. 

Consequently, there is an urgent need to 

prioritize the enhancement of aquatic 

products and their health. This necessitates 

a concerted focus on oxidative stress 

studies and the adoption of sustainable 

practices aimed at protecting fish 

populations and preserving the integrity of 

aquatic ecosystems (Ates et al., 2008; 

Kakoolaki et al., 2013; Mesut, 2021; 

Selamoglu, 2021). By proactively 

addressing these challenges, we can reduce 

the negative impacts of pollution on aquatic 

environments while maintaining high 

quality aquatic products and fish species. 

One of the most prevalent transition 

metals in nature, copper (Cu) serves a 

variety of functions in organisms and is a 

necessary nutrient (Burke and Handy, 

2005). Cu contamination is pervasive in the 

aquatic environment. Copper is frequently 

found in aquatic systems from both natural 

and man-made sources. Geological 

deposits, volcanic activity, weathering and 

erosion of rocks and soils, and geological 

deposits are all natural sources of copper in 

surface water. Aquatic system pollution is a 

serious environmental issue that is 

becoming more and more global. Aside 

from cadmium, copper is one of the most 

often used metals that cause pollution. In 

several industrial and agricultural 

operations, people use copper (Carvalho 

and Fernandes, 2008; Kumar et al., 2021). 

It is a part of several fungicides, algaecides, 

bactericides, and herbicides, particularly in 

the forms of sulfate, hydroxide, 

oxychloride, carbonate, citrate, or 

gluconate (Ali et al., 2019). Therefore, 
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contamination will unavoidably happen by 

Cu forms. Due to human and natural inputs, 

waterborne Cu has been identified in the 

environment in high amounts (Cu, 0.04-560 

g/L) (Agency, 2007; Oliveira et al., 2008; 

Yusni and Ifanda, 2020). 

Due to their remarkable 

physicochemical characteristics, metal 

oxide nanoparticles (NPs) are often 

employed in a wide range of consumer 

goods and industrial technologies. 

Nanomaterials are employed in a variety of 

home furnishings and appliances, the 

production of textiles and electronics, the 

creation of medical devices, and 

bioremediation technology (Montes et al., 

2012). The items incorporating 

nanomaterials will be released into aquatic 

ecosystems and agricultural areas as a result 

of large-scale manufacture and use 

(Chatterjee, 2008; Fabrega et al., 2011; 

Scott-Fordsmand et al., 2017). Metal oxide 

NPs are among the most popular 

nanomaterials, and their possible ecological 

consequences have attracted a lot of 

interest. Due to their increased potential for 

potential uses in the future and the fact that 

NPs are an addition to personal care 

products, copper (II) oxide nanoparticles 

(nCuO) are produced in huge quantities for 

both industrial and domestic usage 

(Hochella et al., 2019; Ming et al., 2020). 

Additionally, CuO NPs may find use in a 

variety of industrial settings (Fig. 1). CuO 

NPs are thus among the most likely 

environmental pollutants (Nel et al., 2006; 

Klaine et al., 2008; Poynton et al., 2011; 

Hou et al., 2017). 

 

 

 
Figure 1: A scanning electron microscope (SEM) image of nCuO. 

 

The significance of determining the 

toxicological interactions and effects of 

nCuO and copper salt (CuCl2) 

combinations on aquatic life is highlighted 

by the widespread copper pollution. In this 

study, goldfish are used as a model to 

evaluate the toxic effects of the combined 

exposure of nCuO and CuCl2 in freshwater 

ecosystems on fish. To investigate the 

potential genotoxic and cytotoxic effects in 

both structures of copper we used Comet 

and micronucleus assays as a test for DNA 

damage and gill tissue for histopathology. 

The significance of determining the 



488 Yavaş and Gülsoy, Comparative genotoxic and histopathological effects of copper nanoparticles and ... 

 

toxicological interactions and effects of 

nCuO and CuCl2 combinations on aquatic 

life is highlighted by the widespread copper 

pollution. 

 

Materials and methods 

Following the commencement of the 

experiment, the total copper (Cu) contents 

of all experimental groups were assessed 

using an inductively coupled plasma optical 

emission spectrometer (ICP-OES) (at the 1 

hour). The goldfish (Carassius auratus) 

were purchased from a commercial supplier 

(Dogasan Aquarium, Istanbul, Turkey) and 

were transferred to the laboratory. They 

were given the commercial base diet of C. 

auratus (38.7% crude protein; 13% crude 

fat; 14.8% crude fiber ash) and acclimated 

for a month at 26±1°C under natural 

photoperiod. At the start and the conclusion 

of each exposure session, the standard 

water quality parameters were tested 

according to established procedures 

(APHA, AWWA, WPCF 2005). The pH 

ranged from 7.6 to 8.1±0.1, dissolved 

oxygen was at 8.3±0.3 mg/L, nitrite was at 

0.3 mg/L, and ammonium was at 0.05 mg/l. 

In this study, 180 goldfish from both sexes 

(the mean weight and length of 0.72±0.1 g 

and 4.7±0.1 cm, respectively) were 

prepared. The experiments were randomly 

performed on six groups and at four 

different times, together with a positive (5 

mg/L ethyl methanesulfonate) and negative 

control in three duplicate tanks. There were 

10 fish in each tank (40×30×50 cm) with 25 

L of dechlorinated tap water. Fish were not 

fed during the experiments in order not to 

cause physiological changes. 

nCuO (Alfa Aesar, K02S018, Germany) 

and CuCl2 (Alfa Aesar, 10154919, 

Germany) were produced in diluted water 

and supplied to the aquariums. Specific 

particle size distribution of nCuO 

nanometallic particles with scanning 

determined by electron micrographs 

(SEM). Subnanometer-sized nanoparticles 

with solubility, as determined from SEM 

images, ensure no aggregation is observed. 

It has been found to be about 30nm in the 

regions. This result is commercially 

obtained nano copper (II) is compatible 

with the property given in the material data 

sheet of the oxide (Fig. 1). For the acute 

studies, four distinct nCuo and CuCl2 

concentrations (nominal concentrations: 

100, 150, 200, and 1, 1.5, 2 mg/L for nCuO 

and CuCl2) and four time periods (24, 48, 

72, and 96 h). The acute values of Copper 

compounds in goldfish, presented as 96-h 

median lethal doses, were used to choose 

the test concentrations (Kahru and 

Dubourguier, 2010). 

To reduce changes brought on by fish 

metabolism, the volatilization of less stable 

chemicals, and organism catabolites, the 

test water was replaced every 24 hours 

(80%) by providing semi-static test 

conditions. After exposure times, blood 

samples were taken from the caudal vena of 

anesthetized fish using heparinized 

syringes (100 mg/L MS-222, Sigma 

Aldrich). The fish were put back in their 

tank after a five-minute recovery time in 

well water. 

 

Genotoxicity 

Trypan blue dye was used to examine the 

cells' viability before the experiment began. 

Goldfish were used as test subjects for the 

comet assay, which measures DNA strand 

breaks (single-strand breaks and alkali-
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labile sites). Two fish were removed from 

each aquarium at each sample period after 

24, 48, 72, and 96 hours of exposure and 

given buffered MS-222 anesthesia. To 

avoid causing more DNA damage, all of the 

experimental procedures were carried out 

in the dark beneath a yellow bulb. The 

alkaline comet test was carried out using a 

modified version of the Tice et al. 

Technique (Tice et al., 2000). Briefly, the 

erythrocytes (10µL) were resuspended in 

cooled PBS (pH 7.4) buffer after the 

peripheral blood samples were taken from 

the caudal vasculature using a 1 mL 

heparinized syringe. The suspension (65 

µL) was then combined with 100 µL of 

0.65% (w/v) agarose with a normal melting 

point before being applied on a frosted slide 

that had already been precoated with 0.65% 

(w/v) agarose with a high melting point. 

The microscope slide was then submerged 

in a cold (4°C) lysate solution that 

contained recently added 1% Triton X100 

and 10% DMSO and contained 2.5 M 

NaCl, 10 mM Na2EDTA, 10 mM Tris-HCl, 

and 1% SDS. To facilitate DNA unwinding, 

the slide was incubated in a newly made 

alkaline buffer (1 mM Na2EDTA and 300 

mM NaOH, pH 13) for 30 min after 2 h. In 

the same buffer, electrophoresis was 

performed at 4 °C for 30 min at 15 V and 

300 mA. After being neutralized with a 0,4 

M Tris solution (pH 7.59), the slides were 

immediately stained with 75 L EtBr (10 

g/mL) for viewing under a fluorescence 

microscope (BX51TF, Olympus, Japan) 

with a 530 nm excitation filter, a 590 nm 

emission filter, a digital camera (Kameram 

A640 FL). A computer-based image 

processing system was used to make the 

genotoxic observations and analysis 

(Kameram Komet Module, Micro System 

Ltd. Turkey). For data analysis of DNA 

damage percentage in the tail and olive tail 

moment, 100 cells from each replication 

slide were randomly chosen. The fraction 

of DNA-damaged cells with more than 5% 

damaged DNA in the tail was used to 

establish the DNA damage percentage. The 

amount of DNA in the tail distribution and 

the distance between the head and the tail 

were calculated to create the Olive tail 

moment (Olive et al., 2012). To reduce 

score fluctuation, each slide was examined 

by a single observer while remaining 

completely blind. All chemicals used in 

these processes were bought from Sigma-

Aldrich. 

 

Micronucleus 

The slides that would be stained with fish 

blood were maintained in a solution of 99% 

ethanol and hydrochloric acid for 10 

minutes before being rinsed with distilled 

water (dH2O). The slides' edges were 

covered with fish blood samples. After 

soaking in 99% ethyl alcohol for ten 

minutes, the examples were fixed. The 

slides were run through dH2O after the 

ready-made 5% Giemsa (Sigma-Aldrich) 

stain was applied to the smear preparations. 

Canadian balsam (Entellan) was used to 

seal the stained preparations so they could 

be examined under a light microscope 

(BX51TF, Olympus, Japan). Four distinct 

zones were chosen and 250 cells were 

counted with the 100 x lens. The images 

were captured using the Image Pro Express 

6.0 software. To quantify the frequency of 

notched nuclei, lobed nuclei, budding, 

fragmenting, and micronucleated (MN) 

cells per 1000 cells (‰), 1000 erythrocytes 
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were scored from each slide at a 

magnification of 1000 x. %MN is 

determined by dividing the total number of 

cells by the number of cells that contain 

MN. 

 

Histopathology 

After 96 hours, fish from the negative 

control group (negative) and nCuO and 

CuCl2 exposure groups were removed and 

dissected gill tissues were processed for 

histological analysis. Fixation was made in 

10% neutral formalin with 0.03% eosin 

(F5304, Sigma) 24. After fixation for 24 h, 

gill tissues were dehydrated through a 

graded series of ethanol for 30 minutes 

each, cleared in xylene, and infiltrated in 

paraffin (56-58oC). Sections of 7-10 μm 

were prepared from paraffin blocks by 

using a rotary microtome. Staining with 

Hematoxylin dye (Hematoxylin Solution, 

Mayer's) for 15 minutes and in Eosin 

solution (EosinYY-Solution 0.5% Aqueous 

for Microscopy, Merck) for 5 minutes. 

Histological preparations were randomly 

examined three times, and the results from 

each observation were combined for the 

final results. Histopathological images 

were captured using an Olympus BH2 

microscope with an image analyzer system 

(Media Cybernetics, Silver Spring, MD). 

 

Statistical Analysis 

The averages and standard deviations (SD) 

of each independent experiment that was 

carried out in triplicate were given as 

experimental data. SPSS for Windows 

version 11.0 was used to conduct all 

statistical analyses (SPSS Inc., Chicago, IL, 

USA). The difference between groups was 

examined using a three-independent-

samples test, which was followed by a non-

parametric Mann- Whitney U test. p-value 

0.05, significance was determined. 

 

Results 

In the exposure groups (nCuO: 100, 150, 

and 200 mg/L and CuCl2: 1, 1.5, and 2 

mg/L) of goldfish at 24, 48, 72, and 96 h 

with positive, negative controls, comet 

formations reflecting the DNA profile 

migrated out of the nucleus was shown by 

fluorescence staining. When the comet 

images obtained from the positive control 

and application groups were compared with 

the negative control, it was seen that the tail 

formation increased significantly (p=0.05). 

The Comet images were analyzed using a 

computer program, and DNA damage 

levels were presented as % DNA tail and 

olive tail moment. We discovered that the 

specimens that were exposed to all 

concentrations of nCuO and CuCl2 had 

significantly more DNA damage than the 

negative and positive control after 

performing the comet assay on erythrocytes 

(Fig. 2). We discovered high comet scores 

when we compared the positive control (66 

±5.43% Tail DNA and 46±3.21 Olive tail 

moment) and experimental groups. The 

highest comet score compared to the 

positive control was seen in fish exposed to 

nCuO. It was observed that the 

experimental groups exposed to both 

chemicals had higher DNA damage than 

the positive control (Table 1, Figs. 2 to 4) 

After staining and monitoring under the 

light microscope, the frequencies of MNs 

generated outside the main nucleus as a 

result of genetic damage were assessed. 

When the MN pictures from the positive, 

negative, and experimental groups were 
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compared to the negative and positive 

controls, MN formation was determined to 

be significantly increased (p=0.05). The 

quantity of MN increased rapidly, 

especially as the exposure period increased 

(Fig. 5). 

Histological images of the gills obtained 

from the positive, negative, and 

experimental groups were compared with 

the negative and positive control.  

 

 

 

 

Table 1: nCuO and CuCl2 at various concentrations have an impact on comet properties in the erythrocytes 

of Carassius auratus. 

 Concentration Time Tail % DNA Olive tail moment 

 Negative  28 ± 1.3 10 ± 0.7 
     
 Positive 24h 66 ± 5.43 46 ± 3.21 
     

nCuO 

100 mg/L 

24h 65 ± 3.78 52 ± 1.36 

48h 74 ± 3.9 59 ± 2.11 

72h 78 ± 3.45 66 ± 2.21 

96h 81 ± 4.45 73 ± 3.3 
    

150 mg/L 

24h 71 ± 3.65 59 ± 1.7 

48h 79 ± 2.7 80 ± 4.87 

72h 77 ± 3.9 66 ± 2.4 

96h 85 ± 3.15 76 ± 2.6 
    

200 mg/L 

24h 69 ± 2.21 58 ± 1.91 

48h 73 ± 4.6 65 ± 4.21 

72h 80 ± 3.57 68 ± 2.13 

96h 86 ± 3.15 79 ± 3.78 

     

CuCl2 

1 mg/L 

24h 76 ± 2.78 52 ± 2.9 

48h 61 ± 2.96 59 ± 2.87 

72h 81 ± 5.12 66 ± 2.45 

96h 80  ± 3.38 73 ± 2.24 
    

1.5 mg/L 

24h 78 ± 2.7 59 ± 1.36 

48h 62 ± 2.6 80 ± 3.91 

72h 74 ± 2.13 66 ± 2.74 

96h 82 ± 4.78 76 ± 2.87 
    

2 mg/L 

24h 76 ± 2.9 58 ± 1.5 

48h 65 ± 2.78 65 ± 2.04 

72h 82 ± 3.46 68 ± 2.19 

96h 80 ± 5.24 79 ± 3.21 
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Figure 2: Erythrocytes of C. auratus showing: (a) negative control DNA, (b) positive control DNA, (c) DNA 

damaged after exposure to nCuO and (d) DNA damaged after exposure to CuCl2. 

 

 
Figure 3: Showing tail % DNA and standard error bars as a result of exposure to nCuO at different 

concentrations and durations with positive and negative control in goldfish (p<0.05). 

 

 
Figure 4: Showing tail % DNA and standard error bars as a result of exposure to CuCl2 at different 

concentrations and durations with positive and negative control in goldfish (p<0.05). 
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Figure 5: MN counts are shown on a graph of comparative frequency in the erythrocytes of goldfish after 

exposure to nCuO and CuCl2 (p<0.05). 

 

Significant deteriorations in the gill 

epithelium such as uplift, edema, fusion of 

secondary lamellae, hyperplasia, and 

hypertrophy were observed that would 

prevent even the function of the gills (Table 

2). The images obtained as a result of 

histopathological staining revealed the 

differentiation in the gill structure (Fig. 6). 
 

 

Table 2: Histopathological evaluation of the findings of nCuO and CuCl2 administration groups. 

Concentration 
nCuO CuCl2 

100 mg/L 150 mg/L 200 mg/L 1 mg/L 1.5 mg/L 2mg/L 

Degeneration of secondary 

lamellae 
+ + ++ + + + 

Epithelial lift + ++ +++ + ++ ++ 

Fusion + ++ +++ + ++ ++ 

Hyperplasia + ++ ++ + + ++ 

Hypertrophy + ++ +++ ++ + ++ 

Edema - + ++ - + + 

+:less, ++:moderate, +++:severe 
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Figure 6: Micrograph showing the gill histopathology of goldfish treated with nCuO and CuCl2 respectively 

a) mucous hypertrophy b) lamella epithelial removal c) fusion of four secondary lamellae. 

 

Discussion 

The primary objective of this study was to 

systematically collect and analyze data to 

elucidate the genotoxic and 

histopathological impacts of nCuO and 

CuCl2 on Carassius auratus, commonly 

known as goldfish. This experiment aimed 

to determine the differential effects of these 

copper-based compounds at various 

concentrations, exploring their potential to 

induce DNA damage and cellular 

alterations within the tissues of the exposed 

organisms. By employing a range of 

biomarkers for genotoxicity and 

histopathological assessment, the study 

sought to provide a comprehensive 

overview of the cellular and molecular 

disruptions occurring in response to these 

specific contaminants. The results of this 

research are intended to contribute valuable 

insights into the toxicological profiles of 

nCuO and CuCl2, thereby informing risk 

assessment and management strategies in 

aquatic environments where these 

compounds are prevalent contaminants 

(Kahru and Dubourguier, 2010).  

Behavioral changes in fish were 

monitored throughout chemical 

administration (Sharma et al., 2019). In this 

study, it was found that since there was an 

excessively dark environment in all 

concentrations of nCuO, the fish swam 

close to the surface of the water and there 

was a decrease in their movement. In CuCl2 

concentrations, active swimming rates 

decreased and they moved more towards 

the bottom. In a similar study, Tilton et al. 

reported that active swimming rates of 

zebrafish, in a mixture of copper chloride 

and chlorpyrifos, decreased  as in their 

study (Tilton et al., 2011). 

Results showed that the comet test was 

more sensitive in fish studies than the 

micronucleus test, and they suggested that 

the two tests, which revealed DNA damage 

from distinct perspectives, may be 

combined (Ternjej et al., 2010; Pavlica et 

al., 2011). The integrated biomarker 

response index, which integrates the 

numerous biomarkers in a multivariate data 

set, can offer a comprehensive harmful 

effect of pollution on organisms. Many 
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field and laboratory environmental risk 

assessment studies have used this strategy. 

However, till recently, no investigations on 

the harmful effects of TiO2 NPs at projected 

ecologically relevant concentrations on 

marine scallop have been published (Kim et 

al., 2010; Kim et al., 2013; Kim and Jung, 

2016). Blood cells are susceptible to 

potentially harmful compounds, as 

indicated by research involving CuSO4 

molecules (Beninca et al., 2012).  

Researchers who performed the comet test 

to demonstrate genotoxicity discovered 

time- and concentration-dependent 

increases in the exposed groups as 

compared to the control groups by 

examining the proportion of DNA tail 

damage (Ghisi Nde et al., 2011; Pavlica et 

al., 2011; Beninca et al., 2012). Many 

researchers have shown that the comet test 

is an inexpensive, rapid and reliable test for 

detecting genotoxicity (Mohanty et al., 

2011; Sponchiado et al., 2011; Kousar and 

Javed, 2015; Chelomin et al., 2017; 

Kaygisiz and Ciğerci, 2017; Sehirli et al., 

2017; Jafar et al., 2019; Atila et al., 2020; 

Moller et al., 2020; Boyadzhiev et al., 

2022). In our study, as a result of the 

examinations made with the comet test, 

DNA damages were more clearly seen with 

the increase in concentration and exposure 

time, in accordance with the literature. Our 

results showed that there was more damage 

in the exposed groups compared to the 

positive control. Studies have shown that 

copper nanomaterials cause more DNA 

damage compared to other nanomaterials. It 

has also been found that the comet test is 

sensitive and accurate in revealing potential 

nanomaterial DNA damage (Boyadzhiev et 

al., 2022). Studies have shown that copper 

nanomaterials cause more DNA damage 

compared to other nanomaterials They have 

also found that the comet test is sensitive 

and accurate in revealing potential 

nanomaterial DNA damage (Boyadzhiev et 

al., 2022). 

The studies demonstrated how a variety 

of heavy metals increased MN counts and 

can be used on blood and other tissue cells 

(Bolognesi and Hayashi, 2011; Obiakor et 

al., 2012; Di Bucchianico et al., 2013). 

Depending on the concentration and 

duration used during the application of the 

nCuO and CuCl2 linear increase in MN 

counts was found (Fig. 5). This increase 

was observed to be greater in fish exposed 

to nCuO. Semisch et al. explained that 

nCuO particles accumulate more in the 

nucleus than other copper forms, resulting 

in an increased level of DNA strand breaks 

(Semisch et al., 2014). A Genotoxic study 

of Labeo rohita revealed the development 

of micronuclei, supporting the MN test as a 

biomarker tool for water contamination 

(Hussain et al., 2018). It is worth 

mentioning that the formation of these 

nuclear anomalies caused by toxicant 

exposures may further require explainable 

studies (Cavas and Ergene-Gozukara, 

2003). 

Gill tissues are significant target tissues 

for histopathological alterations because 

they play a fundamental role in respiration 

and are in direct contact with water (Wood 

and Eom, 2021). Copper exposure is known 

to cause alterations in the gill epithelium 

such as hypertrophy, hyperplasia, necrosis, 

and secondary lamellae fusion (Karayakar 

et al., 2010; Ostaszewska et al., 2016).  

Furthermore, copper nanoparticles build up 

more quickly in the liver and other organs 
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of living things than in bone tissues (Wang 

et al., 2014). Not only copper forms do not 

damage tissues and organs, but studies have 

also reported that pesticides used in 

agriculture also damage different tissues 

such as the brain. Continuous use of 

pesticides enters the aquatic ecosystem and 

threatens the living organisms in the water. 

According to current understanding, living 

organisms may experience oxidative stress 

as a consequence of the accumulation of 

hazardous chemicals (Ostaszewska et al., 

2016). In this case, the air supply will 

decrease, it will disrupt organ functions, 

shorten the lifespan of the living thing 

significantly, and even cause death. (Luzio 

et al., 2013). Zebrafish gill alterations 

revealed that epithelial cell proliferation as 

well as edema of main and secondary gill 

filaments following exposure after 48 hours 

of exposure to 0.25 mg/L ionic copper and 

1.5 mg/L Cu NPs in the literature (Griffitt 

et al., 2007; Griffitt et al., 2008; Griffitt et 

al., 2009). In our study, we observed 

degeneration of secondary lamellae, 

epithelial lift, fusions, hyperplasia, 

hypertrophy, and edema . These alterations 

contribute to thickening and damaging the 

surface of the gills which inhibates gas 

exchange, particularly oxygen uptake. (Al-

Bairuty et al., 2013; Hao et al., 2013). As a 

result of our study, tissue alterations and 

damages seen in fish exposed to nCuO may 

have a greater impact on the overall health 

of aquatic organisms than CuCl2. 

Given the critical role of essential metals 

(Fe, Zn, and Cu) as cofactors in numerous 

enzymatic processes, their levels in fish are 

significant due to strict physiological 

regulation, emphasizing the importance of 

understanding these concentrations for both 

fish management and human consumption 

(Kamaruzzaman et al., 2011). They have 

been reported that the accumulation of 

these metals at certain levels is not fatal for 

living organisms or when they are 

transferred through the food chain. 

However, the damage that will occur in the 

accumulation of metals in living organisms 

can reach levels that can no longer be 

tolerated by living organisms. These 

accumulations are seen in different tissues 

(Caglar et al., 2019). Metal accumulation in 

fish differs between tissues and is affected 

by the environmental conditions of the 

environment where the fish live (Unlu et 

al., 2009). Heavy metals have been found 

to be more dangerous for aquatic 

ecosystems, especially for fish feeding in 

deep waters (Popek et al., 2003). After 

heavy metal accumulation in fish, 

particularly through the food chain, toxic 

effects ensue in other organisms. 

Nonetheless, studies have clearly indicated 

that the detrimental effects of heavy metal 

accumulation in fish can be prevented by 

certain antioxidative substances. One of the 

most frequently reported antioxidative 

substances is propolis. (Fuat Gulhan et al., 

2012; Kakoolaki et al., 2013; Talas et al., 

2014; Selamoglu et al., 2015) and selenium 

(Ates et al., 2008; Talas et al., 2008; 

Selamoglu, 2011).  

Exposure of goldfish to nCuO and CuCl2 

at relevant concentrations resulted in DNA 

damages as determined by comet assay of 

genotoxicity. Histopathological 

examination revealed that the gill is a target 

organ for copper toxicity. nCuO caused 

more gill morphological changes upon 

exposure, than CuCl2. Both types of copper 

forms can produce increased oxidative 
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stress, leading to DNA damage in the case 

of exposure to copper. MN test is as 

sensitive as the comet test in detecting 

genotoxicity. However, more techniques 

should be used to quantify genotoxic 

capacity. As a result, copper oxide 

nanoparticles (nCuO) and copper salt 

(CuCl2) can cause harmful effects in fish at 

these concentrations. The release of excess 

copper concentration into the aquatic 

environment poses a potential risk to the 

aquatic environment. As a result of copper 

accumulation in aquatic organisms, DNA 

and tissue damage caused by excess copper 

accumulation, which they transferred to 

humans through the food chain, can be 

reduced by propolis, selenium, and 

different protective compounds reported in 

the literature. 
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