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Abstract. This study provides a molecular and phenotypic characterization of an

entomopathogenic nematode-bacterium complex isolated from agricultural soil and

nematode efficacy against Helicoverpa armigera. The nematode, identified as

Steinernema anantnagense KP_CU, was characterized using the internal transcribed

spacer (ITS) region of rRNA, revealing 100% similarity with the type population of .

anantnagense. Phylogenetic analysis confirmed its conspecific status within a clade

including 8. kushidai, S. akhurst, and S. populi. Concurrently, the associated

bacterium, identified as Xenorhabdus sp. KP_CU, exhibited 100% similarity in its 16S

rRNA sequence with Xenorhabdus anantnagensis XENO-2', suggesting

conspecificity. Phenotypic characterization aligned the bacterium closely with X.

anantnagensis, highlighting typical traits such as rod-shaped, gram-negative cells and

absence of bioluminescence. Biochemical tests further supported this identification,

distinguishing KP_CU from other Xenorhabdus species based on citrate utilization,

gelatinase, lysine decarboxylase, urease, arginine dihydrolase, ornithine decarboxylase,

glucose oxidation, cytochrome oxidase and indole production. Phylogenetic analysis

based on 16S rRNA sequences placed Xenorhabdussp. KP_CU within a monophyletic

clade with X anantnagensis, along with sister relationships to X. japonica and X.

vietnamensis. The bacterial strains also exhibited larvicidal activity against Galleria

mellonella and even at the lowest optical density (ODsgo = 0.125) induced over 80%

larval mortality within merely 24 h post-injection, emphasizing its elevated virulence.

The strain KP_CU could kill the wax moth larvae with 38, 16 and 9 IJs at 24, 36 and

48 h, respectively. The nematode isolate KP_CU demonstrated high virulence against

H. armigera larvae, with complete mortality achieved within 60 h across all tested

inoculum levels. Mortality began at 36 h post-inoculation at 100 IJs/larva and was Q:;]je]:;:“ory 29 June 2024
reached within 24 h at 200 IJs/larva. LD50 values decreased significantly from 38 IJs Acccptcd‘: 13 September

at 24 h to just 9 IJs at 48 h, indicating potent lethality. Additionally, progeny  published: 01 January 2025
production showed a dose-dependent increase, though slightly reduced at higher doses,
suggesting a trade-off between virulence and reproductive success. These results suggest ~ Stbject Editor: Javad Karimi

that 8. anantnagense KP_CU could hold potential as a biocontrol agent for A,  Corresponding author: Aashaq Hussain

. . . . . . Bhat
armigera in agricultural settings in India.
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Introduction

Entomopathogenic nematodes (EPNs) of the genus Steinernema are globally important soil-dwelling insect
pathogens, thriving in diverse soil habitats (Bhat eral, 2020; Jaffuel eral,, 2018). These nematodes form symbiotic
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relationships with bacteria of genus Xenorhabdus, residing in their alimentary canals-(Machado er af, 2023).
Together, they can kill insect pests within 24 to 48 h, making them highly relevant for biological pest control
(Janardhan er al, 2023). The entomopathogenic bacteria (EPB) reside in the intestines of the infective juvenile
(I]) stages of these EPNs. Upon entering an insect host, the IJs release into the insect’s hemocoel (Askary er al.,
2022). The EPB depend on their nematode partners for transmission between hosts and protection from external
environments (Bhat er a/, 2019; Machado er al,, 2024). While a single bacterial species can be associated with
multiple EPN species, each EPN species typically harbors a specific bacterial species (Gulcu er al, 2017).

Steinernema 1]s typically enter the insect host through natural openings, and after penetration, regurgitate
their associated bacteria (Bhat er al,, 2019; Machado er al,, 2022). The bacteria proliferate in the insect hemocoel,
producing a range of toxins, secondary metabolites, hydrolytic enzymes (such as lipases, phospholipases, and
proteases), and broad-spectrum antibiotics, leading to host death via septicemia (Machado er al, 2023; Rana er
al., 2020). Additionally, these bacterial symbionts produce antimicrobial compounds that restrict or stop the
growth of competing microbes within the host, creating conducive environment for nematode reproduction and
development (Heena eral, 2021). EPNs and their symbiotic bacteria, are considered safe biocontrol agents, posing
no threats to humans, other mammals, vertebrates, or plants (Bhat er a/, 2019; Drema er al,, 2024). Their
specificity to arthropods presents lower environmental risk compared to chemical plant protection agents (Akhurst
& Smith, 2002). The biochemical capabilities of Xenorhabdus bacteria are particularly notable, enhancing their
relevance in agriculture, biotechnology, and medicine (Bhat er a/,, 2017; Machado er al., 2023).

Helicoverpa armigera Hiibner (Lepidoptera: Noctuidae), commonly referred to as the cotton bollworm, is
among the most destructive pests affecting global agriculture, inflicting significant damage on various economically
critical crops (Rana er al, 2021; Riaz er al, 2021). This highly polyphagous species has an extensive geographic
range, spanning Asia, Africa, Europe, and Australia. It is particularly notorious for attacking key crops, including
cotton (Gossypium hirsutum), chickpea (Cicer arietinum), pigeon pea (Cajanus cajan), tomato (Solanum
lycopersicum), and maize (Zea mays) (Bhat et al,, 2019; Riaz et al,, 2021). In India, infestations of H. armigera
have caused severe yield losses in vegetable crops, resulting in annual economic damages reaching millions of
dollars (Askary er al., 2022). Historically, the control of H. armigera has predominantly depended on chemical
insecticides, such as pyrethroids, organophosphates, and carbamates. However, the indiscriminate and excessive
use of these pesticides has led to resistance development within the pest populations, rendering these chemical
agents increasingly ineffective (Bhat er a/, 2020; Machado er al, 2021). Furthermore, reduced susceptibility to
transgenic Bt cotton has exacerbated its pest status, complicating control measures. In response to these challenges,
alternative approaches, particularly using indigenous biological control agents like entomopathogenic nematodes,
have emerged as sustainable, eco-friendly strategies for managing this tenacious pest (Loulou er af,, 2023).

This study focuses on the phenotypic, biochemical, ecological and molecular characterization of Xenorhabdus
species isolated from Sreinernema nematodes found in Indian agricultural soils. The isolated nematodes were also
molecularly characterized. This partnership is particularly noteworthy due to the unique ecological niche and
adaptive traits exhibited by these organisms. Finally, the isolated nematodes were tested in laboratory bioassays for
pathogenicity and reproductive potential against Helicoverpa armigera Hiibner (Lepidoptera: Noctuidae).

Materials and methods
Nematode isolation

Soil samples were collected from different agricultural fields in the Anantnag district of Jammu and Kashmir, India.
The isolation of EPNs from these soil samples was performed using the soil baiting method (Bedding & Akhurst,
1975) with Galleria mellonella Linnaeus (Lepidoptera: Pyralidae) as bait. The cadavers were rinsed with double
distilled water (ddH,O) and disinfected with 0.1% NaOCI (Rana er a/, 2020; Suman er al,, 2020). The IJs of the
EPNs were recovered from the insect cadavers using the White Trap method (White, 1927) and labelled as KP_CU.
The IJs were then sterilized with 0.1% NaOCI and stored in tissue culture flasks at 15°C until further use.

Molecular characterization of EPNs

The isolated EPNs were molecularly characterized using internal transcribed spacer (ITS) (ITS 1, 5.8S, ITS 2)
rRNA markers. Genomic DNA was isolated from IJs using the DNeasy Blood and Tissue Kit (QIAGEN, Hilden,
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Germany). Initially, the IJs were thoroughly rinsed with Ringer’s solution, followed by placement on sterile glass
slides containing small aliquots of AE buffer (2 pL). The nematodes were then cut into fragments, which were
transferred to sterile 0.5 mL Eppendorf tubes containing 17 pL of AE buffer and 2 pL of proteinase K. DNA
extraction was performed following the manufacturer’s instructions. Amplification of ITS rRNA genes was
performed via polymerase chain reaction (PCR) using the primers 18S: 5 TTGATTACGTCCCTGCCCTTT-
3" (forward) and 26S: 5'-“TTTCACTCGCCGTTACTAAGG-3' (reverse) (Vrain et al 1992). The PCR mixture
comprised 16.8 pL ddH2O, 2.5 pL 10X PCR buffer, 0.5 pL dNTP mix (10 mM), 1 pL of each primer, 0.2 uL
DreamTaq Green DNA polymerase, and 3 pL of the DNA template (Leonar er al, 2022). The PCR conditions
involved initial denaturation at 95°C for 3 minutes, followed by 40 cycles of 95°C for 30 sec, 50°C for 30 sec, and
72°C for 1 minute, with a final extension at 72°C for 15 minutes. The PCR products (5 pL) were separated by
electrophoresis on a 1% TAE (Tris-acetic acid-EDTA) agarose gel stained with ethidium bromide (HiMedia,
India) (Bhat er al, 2023; Sebumpan er al,, 2022; Yadav er al., 2022).The amplified products were then Sanger
sequenced using the ABI 3730 (48 capillary) electrophoresis instrument by Bioserve Ltd. (Hyderabad, India), and
the assembled sequence was submitted to GenBank.

Isolation and molecular characterization of bacterial strain

Symbiotic bacterial strain associated with the IJs of isolate KP_CU were isolated from the hemolymph of the G.
mellonella infected with these EPNs. The infected larvae of G. mellonella were dissected using a sterile blade, and
the haemolymph was streaked on fresh LB agar plates (Machado ez al, 2023). The agar plates were properly sealed
with parafilm and kept in a BOD incubator for 24-48 h at 25-28°C. Colonies resembling Xenorhabdus were
further streaked onto fresh LB agar to obtain pure cultures (Akhurst, 1980). Single bacterial colonies were isolated
by transferring individual colonies onto new LB agar plates (Machado et a/., 2023). Colony morphology, texture,
pigmentation, and production were assessed to identify bacterial primary forms. The isolates were sub-cultured
and maintained on LB agar plates at 28°C (Loulou er a/, 2023).

The isolated bacterium was molecularly characterized using 16S rRNA studies. For this, genomic DNA was
extracted from two- to three-day-old bacterial cultures using the GenElute Bacterial Genomic DNA Kit (Sigma—
Aldrich, Switzerland), following the manufacturer’s instructions. The 16S rRNA gene was amplified by PCR using
universal primers 27F (5-AGAGTTTGATCMTGGCTCAG-3') and 1525R (5-AAGGAGGTGWTCCARCC-
3') (Sandstrom er al., 2001). The PCR profiles used were: 1 cycle at 94°C for 4 min; followed by 36 cycles at 94°C
for 30 s; 55°C for 60 s, and 72°C for 45 s; and a final extension at 72°C for 10 min (Loulou er a/,, 2022). The
PCR products were separated by electrophoresis in a 1% TAE (Tris-acetic acid-EDTA) agarose gel stained with
ethidium bromide, and the amplified PCR products were Sanger sequenced. The obtained sequences were
assembled and submitted to GenBank.

Phenotypic and biochemical characterization of the bacteria

Phenotypic and biochemical tests were also performed to characterize the symbiotic bacterium associated with the
isolated EPN. The isolated bacteria were cultured on sterile plates of nutrient bromothymol blue-
triphenyltetrazolium chloride agar (NBTA) (containing of 25 mg/L of bromothymol blue, 4 mg/L of 2,3,5-
triphenyltetrazolium chloride, and 20 g/L of nutrient agar) and MacConkey agar for 24-48 h to record their
phenotypic characteristics by observing their adsorption properties towards bromothymol blue (BTB) and neutral
red, respectively (Akhurst, 1980). Gram staining was performed using the following protocol: 1 min with Crystal
Violet, 1 min with Iodine mordant, 30 sec with 95% ethanol, and 1 min with Safranin O. Optimal growth
temperatures were determined by incubating the bacteria at 20°C, 24°C, 28°C, 30°C, 37°C, and 42°C. To assess
salt tolerance, bacterial growth was evaluated in saline conditions at NaCl concentrations of 1% (standard LB
medium), 2%, and 3%. The pH tolerance range was also investigated using LB medium adjusted to pH 3, 5, 7
(control), 8, and 9. All growth assays were performed in 15 mL conical centrifuge tubes containing 5 mL of LB
broth inoculated with 0.1 mL of overnight bacterial cultures. These were incubated at 28°C with shaking at 180
rpm for 24 h, following the protocol of (Machado er a/, 2021).

Antibiotic susceptibility was tested on LB agar supplemented with 30 mg/L of tetracycline, vancomycin, or
gentamicin. Bacterial suspensions were calibrated to a 0.5 McFarland standard using a DEN-1B McFarland
densitometer (Biosan, Riga, Latvia) in 0.85% NaCl. A 100 pL aliquot of each calibrated suspension was plated
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onto LB agar enriched with the respective antibiotics and incubated at 28°C for 24 h. All experiments were
conducted in triplicate for reproducibility.

The isolated bacteria were further characterized by biochemical tests using the Hi-Media kit, KB003 Hi25
Enterobacteriaceae Identification Kit. This Kit is mainly prepared for the characterisation of Gram-negative
Enterobacteriaceae species and was kept at 2-8°C. The kit comprises 24 biochemical tests, which include 13
conventional biochemical tests and 11 carbohydrates utilization tests. For biochemical tests, phase I bacteria
cultured on NBTA media were transferred to 5000 pL heart infusion broth (Hi-media). The 24 wells of the kit
were filled with 0.05 mL of aliquots from each bacterial culture that had been grown overnight at a temperature
of 35-37°C. Fifty microliter aliquots from the overnight cultured bacteria were added to each of the 24 wells of
the kit. Independent oxidase and catalase tests were conducted on 16-hour LB-bacterial cultures using oxidase
reagent discs and 3% hydrogen peroxide (H202), respectively. The oxidase test was performed by rubbing a
bacterial colony onto the provided oxidase disc, while the catalase test was executed via the slide method with
H,O:. Results were recorded as positive (+) or negative (-) based on the observed color changes in the media, in
accordance with the manufacturer's instructions. All biochemical tests were performed in duplicate to ensure
accuracy.

Sequence alignment and phylogenetic analyses

The ITS rRNA sequence of the nematodes and the 16S rRNA sequences of the symbiotic bacteria were edited
using BioEdit (Hall, 1999). These sequences were then compared with those in GenBank using the Basic Local
Alignment Search Tool (BLAST) (Altschul er a/, 1990) of the National Centre for Biotechnology Information
(NCBI). Alignments of the nematodes and bacterial sequences, along with related sequences from Streinernema
nematodes and Xenorhabdus species, were performed for the ITS and 16S rRNA regions using default MUSCLE
parameters (Edgar, 2004) in MEGA 11 (Tamura er al, 2021). Steinernema glasseri (Steiner, 1929) Wouts,
Mracek, Gerdin & Bedding, 1982 (Rhabditida, Steinernematidae) and Photorhabdus stackebranddi (An &
Grewal, 2010) Machado et al., 2018 (y-Proteobacteria: Enterobacteriaceae) were used as outgroup taxa for the
EPNs and their EPB, respectively. Pairwise distances were calculated using MEGA 11 (Tamura er al.,, 2021). The
distances were computed using the Maximum Composite Likelihood (MCL) and number of differences in Mega
11. Phylogenetic trees of the ITS and 16S rRNA regions were constructed using the Maximum Likelihood method
(Felsenstein, 1981), based on the Hasegawa-Kishino-Yano and Tamura-Nei parameter models, respectively, in
MEGA 11 (Tamura et al,, 2021). Neighbour-Join and BioN] methods were automatically applied to obtain the
initial tree(s). The phylogenetic trees were edited using Interactive Tree of Life (iTOL v6) (Letunic & Bork, 2024).

Ecological characterization

Entomopathogenic properties of isolated Xenorhabdus species were carried out following the methodology of
Machado er al, (2024). To assess the insecticidal potential of a novel Xenorhabdus strain, overnight bacterial
cultures were grown in Luria-Bertani (LB) broth. Following incubation, bacterial suspensions were harvested and
their optical density (OD) at 590 nm (OD590) was measured using a Shimadzu spectrophotometer (Shimadzu,
Kyoto, Japan). Cultures were standardized to an OD590 of 1.0, followed by serial dilutions to achieve final
concentrations corresponding to OD590 values of 0.125, 0.25, 0.50, and 1.0. Subsequently, 0.01 mL aliquots of
each bacterial suspension were injected into third-instar larvae of G. mellonella, with 20 larvae per dilution and
strain (n=20). Larval mortality was evaluated every 24 hours for 3 days post-injection. Wax worms injected with
LB medium and 0.85% NaCl-injected wax worms, as well as non-injected wax worms, served as negative controls.
Repeated-measures ANOVA were applied to the data, with bacterial strain and time post-injection as independent
variables. Assumptions of normality and homoscedasticity were confirmed via Shapiro—Wilk and Levene’s tests,
respectively. Multiple comparisons were performed using the Holm-Sidak post hoc method.

Virulence and efficacy of Steinernema anantnagense against Helicoverpa armigera

The pathogenic potential and bioefficacy of Steinernema anantnagense KP_CU were evaluated against the larvae
of Helicoverpa armigera Hiibner (Lepidoptera: Noctuidae). Bioassays were conducted using six-well plates, each
measuring 3.5 cm in diameter, lined with double layers of Whatman No. 1 filter paper. Infective juveniles (I]s),
aged one week, were employed as inoculants, following the protocol established by Bhat er a/ (2019). Four graded
concentrations of IJs—25, 50, 100, and 200 IJs—suspended in 450 pL of dH,O were administered to the filter
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paper, with untreated larvae serving as the negative control. Ten larvae, uniform in both size and weight, were
exposed to each concentration, with one larva placed per well. The experimental setup was incubated at 28 + 2
°C, and larval mortality was monitored at 12 h intervals until 100% mortality was achieved. To assess progeny
production, larvae treated with different concentrations (25, 50, 100, and 200 IJs) were transferred after 7 days to
a modified White trap (White, 1927) to determine infection persistence and monitor the emergence of IJs over
an 18-20 day period. Mortality data were subjected to probit analysis to calculate the median lethal dose (LD50)
with a 95% confidence interval. Statistical differences in mortality rates across the various IJ concentrations were

analyzed using analysis of variance (ANOVA), and the outcomes were presented as mean percentages + standard
deviation (SD).

Statistical analysis

All statistical analyses including ANOVA, Shapiro—Wilk and Levene’s tests, Multiple comparisons using the
Holm-Sidak post hoc method and probit analysis were performed in GraphPad Prism 10.2.3 and IBM SPSS
Statistics.

Results
Characterization of isolated nematode

The complete ITS rRNA sequences flanked with partial 18S and 28S rRNA sequences were submitted to NCBI
under accession number PP882780. The ITS rRNA region of KP_CU. is 771 bp in length, with ITS1 comprising
274 bp, 5.8S comprising 157 bp, and ITS2 comprising 299 bp. BLASTn analysis showed that the isolate KP_CU
exhibited 100% similarity with ITS rRNA sequences of Steinernema anantnagense (Bhat et al,, 2023). Pairwise
alignment of the ITS rRNA sequence of the isolate KP_CU revealed no nucleotide differences with the type
population; hence they are considered conspecific. The percentage similarity and total character difference with
type population and other closely related species of the “fé/riae group” are shown in Table 1. It shows differences
of 21-120 bp and sequence similarity values of 80-97%.

The construction of a phylogenetic tree based on the ITS rRNA gene sequences confirmed that the present
nematode population is consspecific with S. anantnagense, and a formed a monophyletic clade with it. Together,
they formed a sister clade with S. kushidai (Mamiya, 1988), 8. akhursti (Qiu er al., 2005) and 8. populi (Tian et
al., 2022) (Rhabditida, Steinernematidae) (Fig. 1). The ITS rRNA genes sequence similarity between isolate
KP_CU and type population S. anantnagense is 100%, indicating they are highly similar (Table 1). The
phylogenetic tree also shows other sequences with lower scores when the sequence of validly published Steinernema
species is compared with that of isolate KP_CU.

Phenotypic and biochemical characterization of bacteria

Bacterial colonies were grown on NBTA and MacConkey agar plates for phenotypic characterization. After 24 h
of incubation, the bacterial colonies on NBTA plates exhibited colors ranging from green to brownish green. For
neutral red adsorption analysis, bacterial cultures were incubated on MacConkey agar for 24 to 48 h. Phase I
Xenorhabdus species formed reddish-brown colonies with significant neutral red adsorption, whereas Phase 11
colonies appeared pale yellow or off-white. Microscopic analysis revealed that the bacteria were rod-shaped, Gram-
negative, and exhibited violet staining. No bioluminescence was observed under ultraviolet transillumination. The
observed phenotypic traits and colony morphology suggest the bacterium is a member of the Xenorhabdus genus.

Additionally, the bacteria demonstrated growth across a temperature range of 20°C to 37°C, but cannot
grow at 42°C. The strain also thrived in media containing 1%, 2%, and 3% NaCl and remained viable at pH
levels 3, 5, 7, 8, and 9. Antibiotic susceptibility testing revealed sensitivity to tetracycline and gentamicin, but
resistance to vancomycin.

The results of the biochemical tests indicate that the bacteria exhibit characteristics similar to Xenorhabdus
entomopathogenic bacteria. These biochemical characteristics provide a comprehensive profile of the bacterial
isolates, aligning them closely with the known properties of X. anantnagensis sp. XENO-2" (Table 2). This
detailed profiling is crucial for accurate identification and understanding of the bacterial species.
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Table 1. Pairwise nucleotide similarities (%) of ITS rRNA gene sequences of Steinernema strains and Steinernema

anantmagense KP_CU. Data for present species is in bold.

O 0 N AN VN R W N e

—_
(=]

11
12
13
14
15
16
17
18
19
20
21
22

ITS rRNA 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
S. 1 0 22 56 71 78 79 79 81 81 90 92 92 95 96 99 100 100 102 106 111
anantnagense

S. anantnagense 100 22 56 71 78 79 79 81 81 90 92 92 95 96 99 100 100 102 106 111
S. akhursti 97 97 54 76 70 82 81 85 84 90 96 96 100 101 104 104 106 106 109 112
\S kushidai 93 93 93 95 99 95 102 98 96 112 108 111 112 111 117 114 116 116 121 129
S. sangi 89 89 88 85 103 69 72 61 57 71 69 75 73 71 82 71 81 75 85 75
S. populi 90 90 91 87 84 104 102 106 104 108 111 113 116 120 115 116 120 125 118 131
S. xueshanense 88 88 8 85 89 84 59 19 40 55 47 54 56 52 64 52 57 59 64 58
S. jollieti 88 88 87 84 89 83 91 48 57 62 55 45 45 43 56 63 65 44 60 47
S. 89 89 89 87 91 86 97 93 32 40 31 46 49 47 52 39 45 56 54 52
cholashanense

S. oregonense 89 8 8 87 91 86 94 91 96 40 41 48 51 53 58 45 52 57 59 54
S. tielingense 87 87 87 83 89 84 92 91 94 94 36 60 69 61 63 40 51 68 64 61
S. xinbinense 88 88 87 8 89 85 93 92 96 95 95 49 58 54 58 30 36 59 58 51
8. weiseri 8 8 8 82 88 81 92 93 93 93 91 93 31 20 36 59 67 28 39 29
S. ichnusae 8 8 8 83 89 82 92 93 93 93 90 92 95 25 46 64 68 36 48 25
8. afticanum 87 87 86 85 89 84 92 94 94 93 91 93 97 97 46 65 68 30 49 33
8. citrae 87 87 86 84 87 84 91 91 93 93 91 93 95 94 94 62 67 42 20 40
8. kraussei 87 87 8 8 89 84 93 90 95 94 94 96 91 91 92 92 35 70 64 62
8. silvaticum 87 87 86 84 87 84 92 90 94 94 93 96 90 90 91 91 96 73 68 68
S. littorale 8 8, 8 84 88 83 91 93 93 93 90 92 96 95 96 95 91 91 45 35
S. nguyeni 8 8 8 83 86 84 91 91 93 92 91 93 94 93 94 98 92 91 94 41
S. feltiae 8 8 8 82 88 82 91 93 93 93 91 94 96 96 96 95 92 91 96 95

S. hebeiense 80 80 79 78 82 75 85 88 86 87 85 86 88 88 88 87 85 84 89 87 88

22
120

120
123
129
109
142
93
79
92

83
94
91
76
80
78
84
95
100
72
81
75

Below diagonal: percentage similarity; above diagonal: total character differences.

Molecular and phylogenetic characterization of bacteria

Blastn analysis of the 16S rRNA sequence of Xenorhabdus sp. KP_CU showed 100% similarity with X
anantnagensis XENO-2", followed by 99.85% similarity with X. japonica strain BKP-4 and 99.03% with X.
vietnamensis strain VNO1, indicating they are closely related. The pairwise alignment confirmed that there was zero
total character difference and 100% similarity in nucleotide sequences between the present strain Xenorhabdus sp.
KP_CU and X. anantnagensis XENO-2 ", thus it is considered conspecific. When compared with other related
Xenorhabdus species, it shows a difference of 12-62 bp and has sequence similarity values of 95-99% (Table 3). The
absence of any nucleotide differences in the alignment confirmed that the present strain is genetically identical to X.
anantnagensis XENO-2", leading to the conclusion that they are the same species or conspecific.

A phylogenetic tree based on 16S rRNA gene sequences revealed that Xenorhabdus sp. strain KP_CU forms a
monophyletic clade with Xenorhabdus anantnagensis XENO-2", indicating similarity to the same species (Fig. 2).
The phylogenetic tree also includes sequences with lower scores when compared to the sequence of each officially
published Xenorhabdus species against Xenorhabdus sp. isolate KP_CU. These results were used to compare
maximum identity and nucleotide differences with other Xenorhabdus species, highlighting variations in sequence
length and base composition as distinguishing features. Xenorhabdus sp. strain KP_CU forms a sister clade with X.
Japonicaand X. vietnamensis.

Ecological characterization

The present investigation elucidated the potent pathogenicity of the Xenorhabdus strain when introduced into
waxworm larvae via hemocoel injection. A broad spectrum of bacterial concentrations was examined, revealing
remarkable larvicidal efficacy. Notably, even at the minimal optical density (OD590 = 0.125), the strain induced
over 80% larval mortality within merely 24 hours post-injection, emphasizing its elevated virulence (Fig. 3A), and
achieved complete mortality (100%) across all concentrations evaluated within 72 h (Fig. 3C,D) This rapid onset
of lethality underscores its extraordinary pathogenic capabilities, positioning it as a formidable candidate for
biological control strategies.
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Virulence and efficacy of Steinernema anantnagense against Helicoverpa armigera

The virulence of the Steinernema anantnagense isolate KP_CU against Helicoverpa armigeralarvae is depicted in
Fig. 4A. The results reveal that this isolate exhibit pronounced pathogenicity, inducing substantial larval mortality
within a short period. Complete mortality of treated larvae was achieved within 60 h, irrespective of the inoculum
size. Remarkably, larval mortality commenced as early as 36 h post-inoculation at a dose of 100 infective juveniles
(IJs) per larva, while a higher dose of 200 IJs per larva resulted in larval death within 24 hours. In contrast, no
mortality was recorded in the control groups, even after 72 h of observation.
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Fig. 1. Maximum-likelihood phylogenetic tree of Steinernema EPNs strains reconstructed from ITS rRNA gene sequences.
The bootstrap value is represented by numbers at nodes and the bar represent average nucleotide substitutions per sequence

position.
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Fig. 2. Maximum-likelihood phylogenetic tree of Xenorhabdus bacterial strains reconstructed from 16S rRNA gene

sequences. The bootstrap value is represented by numbers at nodes and the bar represent average nucleotide substitutions per

sequence position.

Table 2. Biochemical characteristics of Xenorhabdus stockiae isolated from Steinernema siamkayai.

S.No.  Tests Results S. No. Tests Results
1. B-Galactosidase - 13 Gelatinase +
2. Lysine decarboxylase + 14 Arabinose oxidation -
3. Citrate utilization + 15 Glucose oxidation +
4. Urease + 16 Mannitol oxidation -
5. Arginine dihydrolase + 17 Sorbitol oxidation -
6. Ornithine decarboxylase + 18 Amygdalin oxidation -
7. Tryptophan deaminase - 19 Cytochrome oxidase +
8. Indole production + 20 Melibiose oxidation -
9. Acetoin production - 21 Inositol oxidation -
10. Sucrose oxidation - 22 Rhamnose oxidation -
11. H>S production - 23 NO: production -
12. Catalase - 24 NO: reduction to N2 gas -
+ = positive reaction, — = negative reaction.
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Fig. 3. Mortality rate (%) of waxworm larvae 24 h (A), 48 h (B) and 72 h (C) after injecting different Xenorhabdus strains at
various cell concentrations (OD590 = 0.125, 0.25, 0.5 and 1).
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The calculated LD50 values further substantiate the high virulence of the KP_CU isolate. At 24 h and 36 h post-
infection, the LD50 was estimated to be 38 and 16 IJs per larva, respectively. Notably, this lethality was markedly
intensified at 48 h post-infection, where the LD50 dropped to 9 IJs per larva, highlighting the rapid and potent
lethality of this isolate.

Moreover, progeny production exhibited a clear dose-dependent pattern, with mean reproductive outputs of
76,500, 88,693, and 98,422 IJs/Larva recorded at inoculum levels of 25, 50, and 100 IJs per larva, respectively.
Intriguingly, at the highest dose of 200 IJs per larva, a slight decline in reproductive output was observed, with progeny
production reduced to 78,665 IJS/Larva, as shown in Fig. 4B. This reduction at elevated doses may suggest a potential
trade-off between the virulence and reproductive success of the nematodes under high infection intensities.

Discussion

The results of this study demonstrate that the nematode KP_CU isolate, identified through ITS rRNA gene
sequencing, exhibits complete sequence identity with S. anantnagense. This result corroborates previous findings
by Bhat er al. (2023), who classified S. anantnagense as a novel species with distinctive genetic attributes. The
phylogenetic tree construction reinforces this identification, as isolate KP_CU groups within a monophyletic clade
with S. anantnagense, affirming their conspecific status. Additionally, KP_CU is positioned in a sister clade with
S. kushidai, S. akhursti, and 8. populi, members of the "feltiae group” of Steinernema. Similar clade arrangements
have been reported in nematode studies where ITS rRNA molecular markers have effectively delineated species
boundaries within the Steinernema genus (Mamiya, 1988; Qiu er al., 2005; Tian er al, 2022). Such molecular
data are pivotal for elucidating evolutionary relationships within the genus, as emphasized in related phylogenetic
analyses (Bhat er al,, 2021; Fukruksa er al, 2017).

Regarding bacterial characterization, the phenotypic and biochemical attributes of the bacterial isolate from
nematode KP_CU align with X. anantnagensis. XENO-2T, a symbiotic bacterium recently described by Machado
et al. (2023). The distinctive blue-green coloration on NBTA and the reddish-brown colonies on MacConkey
agar plates due to bromothymol blue and neutral red adsorption, respectively are characteristic features of Phase I
Xenorhabdus species, consistent with previous findings (Bhat er a/, 2017; Fukruksa er al,, 2017). This distinct
blue-green and neutral red hue aids in differentiating primary bacterial colonies (Phase I) from Phase II colonies,
which develop a reddish color due to the reduction of tetrazolium chloride to formazan (Bhat er al, 2017;
Fukruksa er al, 2017). These phenotypic characteristics, together with Gram-negative staining and rod-shaped
morphology, correspond with earlier descriptions of Xenorhabdus species (Machado er al,, 2023). Furthermore,
the bacterium's ability to grow across a range of temperatures and pH levels, coupled with its resistance profile,
reinforces its identification as X. anantnagensis XENO-2", bolstering its classification within this group. The
biochemical characteristics of the present strain show certain differences from other species such as X. japonica
(Nishimura er al, 1994), X. budapestensis (Lengyel et al.,, 2005), X. doucetiae (Tailliez et al., 2006), X. hominickii
(Tailliez er al,, 2006), which are negative for citrate utilization. The present strain also shows no bioluminescence
similar to other species of Xenorhabdus (Sajnaga & Kazimierczak, 2020).

Molecular analysis of the bacterial isolate KP_CU via 16S rRNA sequencing revealed 100% similarity with
X. anantnagensis XENO-2" and high similarity with X japonica and X. vietnamensis. These findings are
consistent with prior studies employing 16S rRNA as a molecular marker for bacterial identification, particularly
within the Xenorhabdus genus (Fukruksa er al, 2017; Kuwata er al,, 2017). The absence of nucleotide variations
between KP_CU and X. anantnagensis XENO-2" indicates genetic identity, a phenomenon similarly observed in
other Xenorhabdus species where minimal 16S rRNA sequence variation confirms species identity (Bhat er a/,
2021; Sajnaga & Kazimierczak, 2020). Phylogenetic analysis further placed X anantnagensis KP_CU in a
monophyletic clade with X. anantnagensis XENO-2", substantiating their conspecificity. This outcome aligns
with previous phylogenetic studies demonstrating the effectiveness of 16S rRNA gene sequencing in delineating
phylogenetic relationships within Xenorhabdus (Tailliez et al,, 2006) and Photorhabdus (Bhat et al., 2023). The
formation of a sister clade with X. japonica and X. vietnamensis corresponds with other reports indicating close
genetic relationships among these species (Lengyel er al, 2005; Machado er a/, 2023; Nishimura er al, 1994).
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The integration of molecular, phenotypic, and biochemical data in this study aligns with existing research on
Steinernema and Xenorhabdus species. The substantial genetic similarity to known species, supported by
phenotypic characteristics, underpins the classification of both the nematode and bacterial isolates as S.
anantnagense and X. anantnagensis, respectively. These findings corroborate the documented evolutionary and
phylogenetic relationships, offering enhanced insight into the taxonomic and functional characterization of these
organisms. The isolate S. anantnagense KP_CU exhibited virulence against Helicoverpa armigera across four
concentration levels and killed all the larvae within 48 to 60 h. Comparative analyses revealed that . pakistanense
and 8. abbasi achieved 100% mortality in Spodoprera litura Fabricius larvae within 48 to 192 hours at equivalent
nematode doses, highlighting the superior efficacy of isolate KP_CU (Bhat er a/., 2019; Kalia er a/., 2014)). The
variation in virulence across these insect hosts may be attributed to host-specific adaptations of the nematodes
(Bhat eral, 2017; Kalia er al., 2014; Shapiro-Ilan er al, 2003). Furthermore, factors such as nematode penetration
efficiency, reproductive capacity, symbiotic bacteria, applied dosages, as well as biotic and abiotic environmental
variables likely contribute to the observed disparities in virulence (Kamou er al,, 2024; Li er al., 2020; Tarasco er
al., 2023).

Isolate KP_CU also exhibited remarkable reproductive capacity. In a related context, Susurluk er a/ (2009)
reported peak nematode reproduction at an optimal dose of 100 infective juveniles (IJs) per larva. This is consistent
with the findings of Selvan er al (1993), who demonstrated that Heterorhabditis bacteriophora produced the
highest number of IJs at an initial dose of 100 IJs per larva, with reproductive success declining at higher doses
due to intraspecific competition. These results underscore the significant potential of Steinernema anantnagense
KP_CU as a potent biological control agent for H. armigeralarvae in controlled laboratory settings. Future studies
should thus focus on investigating its virulence and pathogenicity across a broader range of agricultural pests under
field conditions and varying geographic regions. The incorporation of isolate KP_CU into biological control
strategies holds the potential to significantly bolster the efficacy of integrated pest management (IPM) programs.

Conclusion

This study successfully isolated and identified Xenorhabdus anantnagensis from the nematode Steinernema
anantnagense, collected from the Anantnag region of Jammu and Kashmir. Molecular and phylogenetic analyses,
corroborated by ITS rRNA and 16S rRNA gene sequencing, verified the conspecific relationship between the
isolated strain and . anantnagense and X. anantnagensis XENO-2T. These findings provide significant insights
into the geographical distribution of entomopathogenic nematodes (EPNs) and their symbiotic bacteria within
India. Moreover, the phenotypic and biochemical characterizations further align the bacterial isolate with
established Xenorhabdus species, consolidating its taxonomic classification. The present study highlights the
potential of X. anantnagensis and its nematode partner in integrated pest management (IPM). The strain’s
adaptability to diverse environmental conditions, coupled with its susceptibility to commonly employed
antibiotics such as tetracycline and gentamicin, underscores its applicability as an effective biocontrol agent.
Utilizing biological agents such as this can substantially reduce the reliance on chemical pesticides, thereby
mitigating risks to human health, preventing environmental contamination, and preserving soil fertility.

Further investigations are imperative to evaluate the pathogenicity and spectrum of efficacy of X
anantnagensis and . anantnagense against a wider range of agricultural insect pests in field conditions. Research
into the mass production and formulation of these biocontrol agents for field deployment should be prioritized to
ensure their scalability and practical utility in sustainable agriculture. Furthermore, elucidating the interaction
mechanisms between these organisms, insect pests, and host plants will be crucial for optimizing their application
in IPM strategies. In light of the global shift towards sustainable agricultural practices, these findings align with
key United Nations Sustainable Development Goals (UNSDGs), including SDG 2 (Zero Hunger), SDG 12
(Responsible Consumption and Production), and SDG 15 (Life on Land). The deployment of X. anantnagensis
as a biocontrol agent has the potential to enhance food security by safeguarding crops from pest infestations, while
also promoting responsible farming practices and conserving biodiversity through the reduced ecological impact
of conventional pesticides. Additionally, future research should focus on assessing the long-term ecological
consequences of utilizing Xenorhabdus species in pest control which will further bolster sustainable pest
management initiatives in alighment with these global objectives.
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