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Abstract  14 

The integration of Machine Learning (ML) and Artificial Intelligence (AI) in animal 15 

biotechnology is revolutionizing the field, particularly in developing countries where agriculture 16 

and livestock play a significant role in the economy. AI and ML enable more efficient data analysis 17 

in areas such as genetic optimization, disease prediction, and livestock management, improving 18 

both productivity and sustainability. With the growing availability of data, AI-driven models can 19 

process large volumes of information from diverse sources like environmental conditions, genetic 20 

markers, and health records, offering more precise insights than traditional methods. Recent 21 
advancements include AI-powered diagnostic systems for detecting and managing disease 22 

outbreaks, which allow for faster response times and more targeted interventions, ultimately 23 

reducing economic losses. Enhanced breeding techniques now leverage machine learning 24 

algorithms to predict desirable genetic traits, enabling farmers to make data-informed breeding 25 

choices. Feed efficiency improvements, another critical area, benefit from AI's ability to analyze 26 

nutrient requirements and optimize feeding schedules based on individual animal needs, reducing 27 

waste and costs. Additionally, AI is increasingly applied in animal health monitoring, using tools 28 

such as sound-based systems and piezoelectric sensors embedded in smart collars that track 29 

behaviors indicative of health issues. In the dairy sector, AI models assess health risks like nitrate 30 

contamination in milk, contributing to safer food production and improving public health. In 31 
genetic studies, AI enhances selective breeding, improving traits like growth and disease 32 

resistance. This manuscript reviews the transformative role of AI and ML in animal biotechnology, 33 

focusing on developing regions, where resource optimization is crucial. By simplifying complex 34 
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techniques and providing step-by-step tutorials, this work aims to equip researchers and 35 

practitioners with practical tools for harnessing AI in animal biotechnology. 36 
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1. Context 40 

Animal biotechnology is transforming rapidly as a result of machine learning (ML) and artificial 41 
intelligence (AI), which present new chances to boost output and address issues with animal health 42 

and breeding. Integration of AI and ML into biotechnology is crucial especially in developing 43 

countries where agriculture and livestock are vital to the economy. It enables the analysis of large 44 

amounts of genetic, health, and environmental data, which in turn helps to improve breeding 45 

practices, disease diagnosis, and enhance overall animal welfare. The use of AI to forecast disease 46 

outbreaks and increase feed efficiency has enormous potential to transform conventional methods 47 

and boost productivity and innovation in livestock management and research. 48 

 49 

2. Data Acquisition  50 

Animal biotechnology and veterinary science have gained significant contributions from recent 51 
research conducted in developing nations which range from transgenic technologies to disease 52 

prevention strategies in livestock. For example, in the dairy industry, feeding of propolis extracts 53 

have demonstrated to influence milk composition and rumen microbial populations in Holstein 54 

cows, while novel approaches in transgenic animal technology highlight the use of nanoparticles 55 

and sperm-mediated gene transfer for improved animal breeding (1,2). Recent research studies on 56 

bovine mastitis in Iran revealed prevalent virulence factors like coagulase and fibronectin-binding 57 

proteins in Staphylococcus aureus, signifying their importance in vaccine development (3). The 58 

use of advanced molecular techniques enhanced the detection of Brucella contamination in buffalo 59 

milk (4) and Borrelia spp. in small ruminants like sheep and goats, underscoring their role in the 60 

natural cycle of Lyme disease and borreliosis (5). Similarly, animal breeding research studies 61 
revealed the enhanced desired traits and growth rates in Moghani crossbred lambs carrying the 62 

Booroola and myostatin genes, thereby demonstrating advancements in sheep breeding programs 63 

(6). Molecular methods and gene sequencing led to identification of pyrethroid resistance in lice 64 

from goats which underlines the need for integrated pest management strategies to combat 65 

pesticide resistance (7). 66 

In poultry industry, advancements in genetic tools have allowed for a deeper understanding of the 67 

genotype-phenotype relationship, improving breeding outcomes for broilers and layers (8). 68 

Significant development in vaccination strategies for necrotic enteritis, a disease affecting poultry, 69 



 

 

have displayed promising results particularly with recombinant chimeric vaccines targeting key 70 

toxins, which can provide alternate solution to using antibiotics (9). Molecular characterization 71 
revealed high prevalence of β-lactamase-producing Enterobacterales in Iranian poultry and 72 

livestock slaughterhouse wastewater, which poses significant zoonotic risks (10).  73 

Nested-PCR based study on wild animals, such as hares and hedgehogs, has revealed their roles 74 

as reservoirs for zoonotic pathogens, including Borrelia spp., adding another layer to wildlife 75 

conservation and management of tick-borne diseases (11). Gene expression studies, particularly in 76 

premature ovarian failure, indicated that platelet-rich plasma (PRP) treatment could restore ovarian 77 

function by inhibiting apoptosis, offering new insights into reproductive health (12). Studies on 78 

venomous snakes have reported the presence of Brucellaabortus, marking the first such discovery 79 

in reptilian populations. Gene expression studies have also advanced, particularly in transgenic 80 

animal research and bioreactor development, such as the successful production of bovine chymosin 81 
in tobacco plants (13). Furthermore, the development of the nanoparticle-based Iribovax® 82 

COVID-19 vaccine demonstrates the continued innovation in animal biotechnology, with 83 

applications extending beyond animal health to address global health challenges (14). These 84 

advancements in animal biotechnology can be further enhanced and optimized through the 85 

integration of artificial intelligence and machine learning, enabling more precise data analysis and 86 

predictions with reduced reliance on traditional experimentation.   87 

Recent studies in machine learning (ML) and artificial intelligence (AI) have demonstrated their 88 

immense potential in animal biotechnology, improving everything from health monitoring to 89 

disease prediction. AI-powered technologies like sound-based systems and piezoelectric sensors 90 

have been integrated into smart collars for continuous livestock health monitoring, allowing the 91 
early detection of health anomalies (15). In dairy production, AI modeling has been used to assess 92 

nitrate levels in cow milk, identifying significant health hazards for children and using algorithms 93 

like Gaussian Naive Bayes (GNB) and eXtreme Gradient Boosting (XGB) for accurate predictions 94 

(16).  95 

In regenerative medicine, AI is improving scaffold design and accelerating the development of 96 

tissue engineering products by addressing challenges such as limited cell sources and improving 97 

tissue integration (17). AI is also playing a vital role in combating antimicrobial resistance (AMR), 98 

where deep learning and high-throughput screening have been used to find new antimicrobial 99 

agents and predict resistance mechanisms (18). Further, outbreaks of animal diseases like foot-100 

and-mouth disease (FMD), have been predicted in Iran, using AI models signifying high accuracy 101 
in disease management (19). 102 

In cattle breeding, AI and ML have been used to identify significant single nucleotide 103 

polymorphisms (SNPs) for genomic selection, enhancing traits like growth and reproduction.  104 

Research studies employing ML algorithms like Random Forest (RF) and Gradient Boosting 105 

Machine (GBM) displayedhigher accuracy over conventional approaches in predicting genomic 106 

breeding values (20). In addition, ML models are employed to predict livestock emissions and 107 



 

 

optimize biogas production from manure, providing solutions to decrease greenhouse gas 108 

emissions.  109 

Similarly, in ecological niche modeling in sheep, the MaxEnt machine-learning algorithm is used 110 

to predict gastrointestinal nematode distribution across climatic zones, contributing to improved 111 
livestock management (21). Technological developments such as genome editing and next-112 

generation sequencing (NGS) have further transformed bovine genomics, with projects like the 113 

1000 Bull Genomes Project identifying SNPs crucial for improving milk and meat quality in cattle 114 

(22). These innovations emphasize the transformative power of AI and ML in advancing animal 115 

biotechnology across various fields. 116 

This review provides an overview of the various applications of ML and AI in animal 117 

biotechnology, with a specific focus on making these concepts accessible and practical in the 118 

context of developing countries. Step-by-step tutorials is included to guide researchers, students, 119 

and practitioners in using AI tools for tasks such as animal genomics, diagnostics, and breeding 120 

optimization. By offering clear, simplified instructions and relevant case studies, the review aims 121 
to empower stakeholders to leverage AI-driven solutions for improving livestock productivity and 122 

health in environments where resource optimization is critical for sustainable development. 123 

 124 

Animal biotechnology refers to the application of scientific and engineering principles to improve 125 

and augment the genetics, reproduction, health, and overall productivity of animals. It aims to 126 

improve animal production, disease resistance, and the conservation of biodiversity through the 127 

use of techniques such as genetic engineering, cloning, and selective breeding. It comprehends a 128 

wide range of practices, from improving livestock and aquaculture efficiency to assisting wildlife 129 

conservation.  130 

The Figure 1 illustrates the role of Artificial Intelligence (AI) in revolutionizing various fields of 131 
animal biotechnology and how it contributes to enhanced growth and development. Broadly, the 132 

applications of animal biotechnology are categorized into three sectors: animals, aquaculture, and 133 

forest animals. Each sector benefits from advanced biotechnological techniques, with AI serving 134 

as a critical tool for optimizing these processes. 135 

In the animal biotechnology sector, AI is leveraged to improve the accuracy of genetic predictions, 136 

reduce generation intervals, and increase the intensity of selection in breeding programs. 137 

Techniques such as multiple ovulation, embryo transfer, twinning, and selfing are improved 138 

through AI, leading to more efficient reproductive outcomes. AI also facilitates the detection of 139 

Economical Trait Loci (ETL), gene transformation, and the identification of potential candidate 140 

genes, all of which contribute to breeding livestock with desirable traits. These advancements 141 
ensure that livestock production becomes more efficient and sustainable. In aquaculture, AI assists 142 

in selective breeding, hybridization, and genetic marker-assisted selection to boost growth, disease 143 

resistance, and sex reversal. It also supports cryopreservation of gametes and transgenic 144 



 

 

technology, which are essential for preserving genetic material and introducing desirable traits into 145 

aquatic species. AI-driven technologies streamline breeding techniques and improve disease 146 

control, ensuring a steady supply of healthy, high-quality fish stocks. Stock enhancement programs 147 

are further bolstered by AI's ability to monitor and predict growth patterns, resulting in more 148 

effective management of aquaculture resources. 149 

 150 

Figure 1: AI-Driven Animal Biotechnology for Enhanced Growth and Development 151 

The application of animal biotechnology also extends to forest animals, where AI plays a crucial 152 

role in conservation efforts. Techniques like habitat restoration, species reintroduction, and genetic 153 

diversity conservation are made more efficient with AI, allowing for the protection of endangered 154 

species. AI facilitates breeding programs for species at risk, monitors population levels, and even 155 

aids in artificial insemination for wildlife species. AI's involvement in disease control, captive 156 

breeding, and genome mapping ensures that conservation efforts are both effective and sustainable, 157 

enabling the recovery of vulnerable wildlife populations. 158 

At the core of these applications, AI enhances a variety of biotechnological processes, such as 159 

cloning, selective breeding, in-vitro fertilization, and artificial insemination. By utilizing 160 



 

 

Quantitative Trait Loci (QTL) detection and advanced techniques like sexing of semen and 161 
embryos, AI helps optimize reproduction and genetic modification practices. The integration of 162 

AI in these biotechnological fields accelerates growth and development in livestock, aquatic 163 

species, and forest animals, ultimately promoting sustainable practices in agriculture, aquaculture, 164 

and wildlife conservation. 165 

3. Results  166 

3.1 Artificial Intelligence and Machine Learning 167 

Artificial Intelligence (AI) and Machine Learning (ML) are powerful technologies revolutionizing 168 

the way machines perform tasks that usually require human intellect. AI encompasses the goal of 169 

building systems capable of intelligent behaviors like reasoning, learning, and making decisions. 170 

ML, a specialized area within AI, focuses on creating algorithms that enable systems to learn from 171 
data and progressively improve without direct programming. By examining vast amounts of data, 172 

ML models can create trends, perform predictions, and adjust to new data autonomously. These 173 

capabilities are transforming fields such as healthcare, finance, robotics, and natural language 174 

processing by automating processes, enhancing decision-making, and revealing insights that 175 

traditional methods. As these technologies advance, they are fostering unprecedented levels of 176 

innovation and efficiency across global industries. 177 



 

 

 178 

Figure 2: An Overview of Artificial Intelligence and Machine Learning Techniques in 179 

Classification, Regression, and Dimensionality Reduction 180 

 181 

The applications of artificial intelligence and machine learning algorithms in animal biotechnology 182 

can be broadly classified into three main categories (Figure 2). In animal biotechnology, the first 183 

main category is classification algorithms which are used to categorize data into predefined groups. 184 

For example, machine learning models can classify animals based on their genetic traits or disease 185 

susceptibility. A common example is predicting whether an animal is healthy or diseased based on 186 

certain biological markers or traits. The second category includes regression algorithms which are 187 

used to predict continuous outcomes in animal biotechnology. For instance, regression models can 188 

estimate the growth rate of animals or predict milk production based on factors such as age, 189 

nutrition, and genetic information. Another example is predicting the weight of an animal based 190 

on its breed and diet. Third category includes dimensionality reduction techniques which are used 191 
to simplify complex datasets by reducing the number of variables while preserving the most 192 

important information. In animal biotechnology, this can help researchers analyze genetic data 193 

with thousands of markers by focusing only on the most significant ones. For example, Principal 194 



 

 

Component Analysis (PCA) can be applied to genetic datasets to highlight key genetic variations 195 

while removing noise, making it easier to understand patterns in animal breeding or disease 196 

studies. 197 

This Figure 2 provides a comprehensive overview of the three core categories of machine learning 198 

algorithms used in artificial intelligence: classification, regression, and dimensionality reduction. 199 

It visually demonstrates how AI models can be categorized and applied based on the problem they 200 

aim to solve. Classification is explained with examples such as Naive Bayes, Random Forest, 201 
Support Vector Machines (SVM), Decision Trees, and other classification algorithms. These 202 

algorithms are used to categorize data into different classes or labels. The visual shows how 203 

classification techniques can separate data into distinct categories or clusters, making it possible 204 

to predict the category to which a data point belongs. For instance, Random Forest and SVM are 205 

popular classification techniques used for tasks like disease detection or image recognition. The 206 

diagram illustrates regression algorithms like Linear Regression, Support Vector Regression, 207 

Polynomial Regression, and Decision Tree Regression. These algorithms predict continuous 208 

numerical outcomes rather than discrete classes. The regression graphshown in the above diagram 209 

by fitting a line or curve to the data, enabling the prediction of values such as disease spread during 210 

pandemic or optimizing process parameters in bioreactor data. Regression models estimate 211 
relationships between variables to make accurate predictions about future outcomes. Another 212 

diagram focuses on dimensionality reduction techniques, which are used to simplify large datasets 213 

with many features (dimensions) into smaller, more manageable ones. This is particularly useful 214 

for improving model efficiency and interpretability. The visual explains this concept by showing 215 

a 3D (Three Dimension) feature space being reduced to 2D (two dimension) and further to 1D 216 

(one dimension) if features are found to be correlated. The algorithms listed here, such as Principal 217 

Component Analysis (PCA), Linear Discriminant Analysis (LDA), and t-SNE, help reduce the 218 

number of features while preserving the most important information in the dataset. 219 

 220 

3.2 Machine Learning and Artificial Intelligence in Animal Biotechnology 221 

Let us take an example study for better understanding of applications of machine learning in animal 222 

biotechnology. Mason al. (2019) (23) used deep learning models to optimize therapeutic antibodies 223 

in mammalian cells by exploring a vast protein sequence space. They applied CRISPR/Cas9-224 

mediated mutagenesis to generate site-directed mutagenesis libraries of the therapeutic antibody 225 

trastuzumab (Herceptin), followed by deep sequencing and flow cytometry to screen these libraries 226 

for antigen specificity. The models successfully predicted antigen-specific binding from a massive 227 

in silico library of ~108 variants, allowing them to identify highly optimized antibody sequences. 228 

To implement the research work described by Mason al. (2019) (23), a thorough understanding of 229 

deep learning, particularly Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs) 230 

and Convolutional Neural Networks (CNNs), as well as foundational concepts in mammalian cell 231 



 

 

biology, is essential. We will present the material in a simplified way that allows readers to gain 232 

practical knowledge in animal biotechnology and artificial intelligence applications, even with 233 

minimal prior experience. 234 

235 
Figure 3: A step-by-step procedure to access Google Colaboratory environment for Machine 236 

Learning applications in Google Drive 237 

The first step in this implementation process is setting up a suitable computing environment. 238 

Currently, Google offers a cloud computing service via Google Colaboratory, which provides a 239 

computing space with around 16GB RAM and 100GB hard disk for running machine learning 240 

applications. This Figure 3 provides a step-by-step guide on how to access the Google 241 
Colaboratory environment through Google Drive, which is essential for running machine learning 242 

and artificial intelligence applications. 243 

Step 1: Begin by logging into your Google Drive. Once inside, click on the option to create a New 244 
Folder. This folder will be used to store your Colaboratory projects and files. 245 
Step 2: Name your folder (in this example, it's "Animal Biotechnology"). After typing the name, 246 

press the Create button to generate the folder. 247 
Step 3: Once the folder is created, double-click on it to open and access the folder for the next 248 
steps. 249 



 

 

Step 4: Inside your new folder, right-click to open a drop-down menu. From there, scroll down 250 
and click on Connect More Apps, which allows you to add additional functionalities to your Drive, 251 
including Google Colaboratory. 252 
Step 5: In the search bar that appears, type "Colaboratory" to find the application. 253 

Step 6: Once the Google Colaboratory app is displayed, click on the Install button to add it to your 254 
Drive. This is a one-time setup process. 255 
Step 7: After the installation is complete, you can now right-click inside your folder again, go to 256 
More, and select Google Colaboratory. This will create a new notebook where you can begin 257 
coding and running machine learning operations. 258 

 259 
To effectively use this environment, it's advisable to spend at least few days learning Python 260 
programming, focusing on basics such as variables, arithmetic operations, loops, lists, functions, 261 
and some critical libraries like Matplotlib, Numpy, and Pandas. Sample Python code for several 262 

applications can be found on platforms like Kaggle (24), which hosts pre-built code for various 263 
machine learning applications in animal biotechnology. Kaggle is owned by Google and is part of 264 

Google Cloud, providing data scientists and machine learning learners with tools and resources for 265 
collaborations. 266 
 267 
Table 1: Machine Learning Applications in Animal Biotechnology: Kaggle (25) Resources 268 

Animal Biotechnology and Machine Learning Kaggle Website URL 

Animals Image Classification using Deep Convolutional Neural Networks 

(DCNN) and Transfer Learning:Animal image classification is a sophisticated 

artificial intelligence application used in fields like wildlife conservation, 

veterinary science, and agriculture. With advancements in deep learning and 

computer vision, it is now possible to analyze large sets of animal images with high 

accuracy.  

https://www.kaggle.com/code/

vencerlanz09/animal-image-

classification-using-

efficientnetb7 

Animal Detection using Animal Dataset:The dataset contains 22,566 images 

across 80 animal classes. The data is preprocessed and visualized, followed by 

training a model that incorporates a pretrained architecture with added dense layers 

for animal detection. The model is trained to classify the diverse animal images 

effectively. 

https://www.kaggle.com/code/

nimapourmoradi/animal-

detection 

Predicting Shelter Outcomes for Cats and Dogs Using Multiclass Classification: 

The code contains multiclass classification to predict outcomes for shelter animals, 

specifically focusing on 4,800 cats and 6,656 dogs from the training dataset. Using 

the randomForest algorithm, the author aim to classify and predict the shelter 

outcomes for the animals based on the data provided.  

https://www.kaggle.com/code/

mrisdal/quick-dirty-

randomforest 

Animal Condition Classification Dataset and Exploratory Data analysis. The 
dataset is designed to assess animal health across various species by 
analyzing five distinct symptoms (1. Fever, Fetopelvicdisproportion, other 
types 2. Diarrhea, Difficulty in breathing, 3. Coughing, Vomiting, 4. Weight 
loss, Death, 5. Pains) to determine if an animal's condition is dangerous. It 
includes a diverse array of animals, offering potential to develop 
predictive models that cross species lines. 

https://www.kaggle.com/datas

ets/gracehephzibahm/animal-

disease 

 269 
The above Table 1 provides a comprehensive overview of various machine learning applications 270 
in animal biotechnology, hosted on Kaggle. It highlights different projects ranging from animal 271 
image classification to health condition assessment. These projects utilize advanced techniques 272 
such as deep convolutional neural networks (DCNN), transfer learning, and multiclass 273 
classification. The datasets are diverse, featuring thousands of images or records, and aim to solve 274 

https://www.kaggle.com/code/vencerlanz09/animal-image-classification-using-efficientnetb7
https://www.kaggle.com/code/vencerlanz09/animal-image-classification-using-efficientnetb7
https://www.kaggle.com/code/vencerlanz09/animal-image-classification-using-efficientnetb7
https://www.kaggle.com/code/vencerlanz09/animal-image-classification-using-efficientnetb7
https://www.kaggle.com/code/nimapourmoradi/animal-detection
https://www.kaggle.com/code/nimapourmoradi/animal-detection
https://www.kaggle.com/code/nimapourmoradi/animal-detection
https://www.kaggle.com/code/mrisdal/quick-dirty-randomforest
https://www.kaggle.com/code/mrisdal/quick-dirty-randomforest
https://www.kaggle.com/code/mrisdal/quick-dirty-randomforest
https://www.kaggle.com/datasets/gracehephzibahm/animal-disease
https://www.kaggle.com/datasets/gracehephzibahm/animal-disease
https://www.kaggle.com/datasets/gracehephzibahm/animal-disease


 

 

real-world problems like animal detection, shelter outcome prediction, and health diagnosis. Each 275 
project is linked to its corresponding Kaggle code, providing an accessible resource for those 276 
interested in exploring and implementing AI in the field of animal biotechnology. 277 
 278 

3.3 Recent Advances in Applications of Machine learning and Artificial Intelligence in 279 
Animal Biotechnology 280 
 281 
3.3.1. AI in Livestock Management  282 
Accurate prediction of animal weight, which is crucial for improving the efficiency and 283 

sustainability of livestock management practices, often involve labor-intensive procedures and 284 

lack instant and non-invasive solutions. The application of AI in livestock management eliminates 285 

the need for physical contact, improves animal welfare and also mitigates potential risks. The Table 286 

2 presents recent applications of machine learning in livestock management. These studies explore 287 

various AI-driven models to address key challenges in livestock farming. For instance, machine 288 

learning algorithms have been employed to forecast livestock supply and outputs, automatically 289 

classify cow behavior, and predict livestock weight. In the area of genomics, machine learning 290 

models have been utilized to identify cattle breeds using SNP panels, showcasing its potential for 291 
advancing livestock genetics. Overall, the studies highlight the power of AI in optimizing farming 292 

processes, reducing costs, and improving sustainability in livestock production. 293 

3.3.2. Genetics and AI 294 

The Table 2 also illustrates recent advancements in using machine learning within animal genetics, 295 

showcasing AI's transformative potential in genetic research. Through the application of machine 296 

learning models, scientists can analyze extensive datasets to forecast genetic traits, enhance 297 

breeding programs, and boost disease resistance. These studies span a range of applications—from 298 

predicting genomic traits in livestock like cattle and chickens to pinpointing crucial genes within 299 

animal models—highlighting AI’s vital role in accelerating research progress and improving 300 

accuracy in livestock management. Machine learning supports the discovery of intricate patterns 301 
and associations within genetic data, making it a critical tool for enhancing breeding program 302 

efficiency and promoting progress in animal biotechnology. The integration of AI in genetic 303 

research not only drives productivity but also supports sustainable agriculture and the preservation 304 

of important genetic resources in animal populations. 305 

 306 

3.3.3. Animal Cloning and AI 307 

Animal cloning, combined with artificial intelligence (AI) and machine learning (ML), is 308 

transforming the field of biotechnology by enhancing precision and efficiency in various 309 

applications. As seen in recent studies (Table 2), machine learning has been applied to identify key 310 

proteins, streamline the cloning process in vaccine development, and enhance mutation mapping 311 
in genetic studies. For example, AI was utilized to analyze serine protease inhibitors in animal 312 

models, while in-silico cloning and vaccine design have benefited from machine learning tools, 313 



 

 

accelerating research without the immediate need for animal trials (32, 33). The ability of machine 314 

learning to handle complex datasets allows for accurate predictions, improving the efficiency of 315 

identifying genetic mutations and optimizing vaccine formulations before animal testing. These 316 

advancements not only speed up research but also reduce ethical concerns surrounding animal 317 

cloning by minimizing the use of live animals in experimental stages. The integration of AI and 318 

ML into cloning processes is pivotal in making animal biotechnology more sustainable and 319 

effective in solving real-world challenges in genetics and disease control. 320 

3.3.4. Embryo Transfer and AI 321 

Embryo transfers, especially in the cattle industry, which involves the visual inspection and 322 

selection of embryos by embryologist suffer inaccuracies, inconsistencies in the manual grading 323 

of bovine embryos and non-availability of embryologist. The integration of machine learning in 324 

embryo transfer technologies represents a significant advancement in animal biotechnology. 325 

Various applications (Table 2), such as using time-lapse imaging to distinguish between embryos 326 

from younger and older mice, are now enhanced by machine learning models that improve the 327 

accuracy of embryo selection (35). In bovine reproduction, spectroscopy and video microscopy, 328 

combined with machine learning algorithms, are enabling more precise predictions of embryo 329 

viability and transferability, enhancing pregnancy success rates (36). These AI-driven systems are 330 

not just limited to cattle; they are being applied to other species, such as Iberian ribbed newts, for 331 
more specialized applications like embryo-fetal development toxicity testing (37). By integrating 332 

advanced data analytics, these studies are paving the way for more informed, data-driven decisions 333 

in the embryo transfer process, reducing failures and improving overall efficiency in reproductive 334 

technologies. 335 

3.3.5. Selective Breeding and AI 336 

Although modern genotyping technologies have transformed genomic selection in animal 337 

breeding, the large marker datasets have numerous drawbacks in terms of flexibility, accuracy, 338 

and computational power. The applications of ML models in animal breeding offers promising 339 

solutions due to their great flexibility and their ability to capture patterns in large noisy datasets. 340 

The integration of machine learning into selective breeding and genomic studies is revolutionizing 341 
animal breeding (Table 2), enhancing the precision of selecting traits such as growth, survival, and 342 

resistance to diseases. Studies show how machine learning models can be applied to predict growth 343 

traits in Pacific white shrimp, improve survival traits in olive flounder, and estimate genetic 344 

parameters in insect production, all contributing to more efficient breeding programs (38, 39). The 345 

application of AI and machine learning in bioinformatics also streamlines genomic data analysis, 346 

making selective breeding more effective across various animal species. These innovations are 347 

particularly crucial in optimizing animal health and productivity while advancing sustainable 348 

agricultural practices. 349 

3.3.6. Accuracy of Prediction in Animal Biotechnology and AI 350 



 

 

The table 2 showcases the critical role of machine learning in enhancing the accuracy of 351 
predictions in various fields of animal biotechnology. Machine learning models are used for a wide 352 

range of applications (Table 2), such as predicting growth and feed efficiency in mink, where 353 

improved accuracy aids selective breeding efforts (41). Conventional methods of measuring feed 354 

intake and body weight of individual animals is time-consuming, labour-intensive, stressful and 355 

expensive. Alternatively, Machine learning applications proposes a cost-efficient approach to 356 

address these limitations. In Holstein cattle, algorithms like CNN and MLP have been applied to 357 

predict behavioral traits, with CNN achieving the highest accuracy (42). Similarly, machine 358 

learning enhances diagnostic capabilities in animal healthcare by improving prediction models for 359 

disease detection. The accuracy of predicting carcass yields in broiler chickens has also been 360 

explored, revealing variations across different machine learning algorithms (43). Overall, these 361 
advancements underline the significant impact of AI and machine learning in improving the 362 

efficiency and accuracy of various animal biotechnology processes. 363 

Table 2: Applications of Artificial Intelligence and Machine Learning in Animal 364 

Biotechnology 365 

Description Citation 

Applications of machine learning in livestock management  

Analyzing Internal and External Factors in Livestock Supply Forecasting: This 

study uses machine learning algorithms to predict future livestock values, focusing 

on sustainability in the pork market. 

(26) 

Predictive Models for Livestock Output: This research applies machine learning 

techniques to predict livestock outputs, utilizing various predictors such as livestock 

units and costs to improve forecasting. 

(27) 

Predicting the Weight of Livestock: A machine learning model that utilizes 

algorithms like Random Forest and Ridge Regression to predict livestock weight 

based on different input features. 

(28) 

Applications of machine learning in the field of animal genetics  

Identification of Potential Feature Genes for Drug Efficacy in Non-Alcoholic 

Steatohepatitis Animal Model: This study uses machine learning algorithms to 

identify key genes that predict treatment responses, focusing on genetic and 

epigenetic RNA markers in an animal model. 

(29) 

Genomic Prediction of Cow Behavioral Traits Using Machine Learning: This 

research focuses on predicting behavioral traits in Holstein cattle, using data from 

automated milking systems and machine learning models to enhance genetic 

selection. 

(30) 

Genomic Prediction in Chickens Using Bioinformatics and Machine Learning: 

Integrating bioinformatics and machine learning, this research aims to predict genetic 

pathways in chickens, identifying crucial genes related to growth and other traits. 

(31) 

Recent advances in animal cloning coupled with machine learning  

Serine Protease Inhibitor Identification Using Machine Learning: This research 

utilized machine learning strategies to identify and analyze serine protease inhibitors, 

key proteins that play a role in cloning experiments in the animal's physiological 

context. 

(32) 



 

 

In-Silico Cloning for Vaccine Constructs against Bovine Coronavirus: This study 

applied machine learning for immunogenic epitope mapping and in-silico cloning to 

expedite the creation of vaccine constructs, focusing on expression vectors for animal 

applications. 

(33) 

Mapping Protective Precision Vaccines using Machine Learning: Researchers 

applied machine learning to structural proteomics and in-silico cloning to develop 

precision vaccines for Mycoplasma pulmonis, optimizing the vaccine before animal 

testing. 

(34) 

The integration of AI & ML in embryo transfer technologies  

Time-lapse Imaging to Differentiate Embryos: This study uses machine learning 

algorithms to analyze time-lapse imaging and differentiate embryos from young and 

old mice for more efficient embryo transfer, with or without preimplantation genetic 

testing. 

(35) 

Spectroscopy and Machine Learning for Bovine Embryo Grading: The research 

focuses on integrating imaging, spectroscopy, and machine learning models to 

automatically predict embryo quality, aiming to improve pregnancy success rates in 

bovine embryo transfer. 

(36) 

AI-Assisted Embryo Selection in Newts: This study developed an AI-assisted 

system for selecting viable embryos in Iberian ribbed newts, which is used for fetal 

development toxicity testing in embryo transfer technologies. 

(37) 

Selective Breeding and AI  

Machine Learning for Genomic Selection in Pacific White Shrimp: This study 

evaluates machine learning methods for genomic selection, focusing on growth traits 

in Pacific white shrimp, enhancing selective breeding programs. 

(38) 

Machine Learning and Survival Traits in Olive Flounder: This study compares 

machine learning models with traditional methods for genomic selection related to 

viral resistance traits in olive flounder, enhancing survival traits. 

(39) 

Bioinformatics in Animal Breeding: A review discussing the integration of 

bioinformatics and machine learning in animal breeding and genetics to enhance the 

accuracy of selective breeding programs. 

(40) 

Machine Learning Techniques for Enhancing Accuracy of prediction   

Prediction of Growth and Feed Efficiency in Mink: This study applies machine 

learning algorithms to predict growth and feed efficiency traits in mink, enhancing 

the accuracy of predictions for selective breeding programs. 

(41) 

Genomic Prediction of Cow Behavioral Traits: Machine learning methods, 

including CNN and MLP, are used to predict cow behavioral traits in Holstein cattle, 

achieving moderate accuracies, with CNN showing the highest accuracy. 

(42) 

Animal Healthcare and Diagnostic Accuracy: A review on the role of machine 

learning in animal healthcare, emphasizing its ability to improve diagnostic accuracy 

in various animal health-related applications. 

(43) 

Aquaculture and AI  

ANN Algorithm  

Random Forest: Used to identify aquaculture ponds and optimize aquaculture area 

management 

(44) 



 

 

Deep Learning: Image dataset for fish disease detection to ensure aquaculture 

health 

(45) 

Decision Trees: AI-based fish growth prediction and optimization of water quality (46) 

Artificial Intelligence and Machine Learning in forest animals  

Study examining vertical foraging niches in mammals and birds using functional 

traits and phylogenetic data to understand ecological and evolutionary patterns. 
(47) 

Deep learning-based model called DeepIndel for predicting outcomes of 

CRISPR/Cas9 genome editing with improved accuracy and interpretability. 
(48) 

Research on the local adaptation of Aedesaegypti mosquitoes, highlighting genomic 

variations linked to environmental conditions. 
(49) 

Investigation of microbial compositions in ticks from neotropical forest fragments, 

analyzing intrinsic and extrinsic factors influencing microbiome structure. (50) 

 366 

3.3.7. Aquaculture and AI 367 

The Table 2 provides a comprehensive overview of how machine learning techniques are applied 368 
across various species in aquaculture to optimize growth, enhance health monitoring, and improve 369 

system efficiency. For example, random forest algorithms have been used in China’s inland lake 370 
aquaculture to identify and manage aquaculture ponds, helping to maximize resource use and 371 
reduce environmental impact. Similarly, non-invasive fish biometric techniques combined with 372 

machine learning have been applied to various species to predict biomass and improve farm 373 
management practices, making aquaculture more efficient and sustainable (44). Early detection of 374 

fish diseases which is crucial in aquaculture, employs methods that are often costlier, time-375 

consuming and invasive. Alternatively, machine learning approaches are rapid, accurate and non-376 

invasive. Another critical area of application is in water quality management and fish health 377 
monitoring. Techniques such as support vector machines (SVM) and ensemble methods have been 378 
used to predict water contamination and identify critical water parameters for aquaculture ponds. 379 
These machine learning approaches ensure that aquaculture systems maintain optimal water 380 
conditions, improving survival rates and reducing the risk of disease outbreaks. CNNs and random 381 
forest models have also been applied in the detection of fish diseases, such as in salmon farming, 382 
where image datasets were used to diagnose health conditions in real-time, reducing mortality rates 383 
(45). The integration of machine learning in predictive modeling for species-specific growth has 384 
proven particularly valuable. For instance, shrimp farming has benefited from machine learning 385 
models that predict shrimp growth, enabling aquaculture operators to optimize feeding regimes 386 

and minimize costs. Lobster farming has seen improvements through IoT-based models that 387 
forecast water quality, ensuring the health and growth of the species (46). Across all these 388 

applications, machine learning serves as a critical tool in driving efficiency, sustainability, and 389 
innovation within the aquaculture industry. 390 

3.3.8. Forest Animals and AI 391 

The application of artificial intelligence (AI) and machine learning (ML) in monitoring forest 392 

animals has emerged as a transformative tool in wildlife conservation and biodiversity 393 

management (Table 2). For instance, the use of phylogenetic trees in the study by Jantz et al. (2024)  394 



 

 

(47) demonstrates the combination of bioinformatics and AI to predict vertical foraging niches in 395 

terrestrial mammals and birds. This approach allowed researchers to utilize functional traits and 396 

phylogenetic data, processed through machine learning models, to understand how evolutionary 397 

patterns influence animal behavior in forest ecosystems. By applying ML techniques, they could 398 

analyze complex ecological relationships and generate insights into how specific traits, such as 399 

diet and body mass, correlate with vertical foraging strategies, showing the significant role of AI 400 

in deciphering ecological data at a deeper level. 401 

In another study (Table 2) by Zhang et al. (2024), (48) deep learning models like BERT were 402 

employed in the DeepIndel framework to predict CRISPR/Cas9 genome editing outcomes, 403 

showcasing how AI and biotechnology can intersect to improve genetic manipulation techniques. 404 

The utilization of advanced machine learning algorithms in this research highlights the potential 405 

for AI to enhance biotechnological applications, including gene editing and precision breeding in 406 

species that inhabit forest environments. Furthermore, the use of stable isotope analysis to study 407 

dietary shifts in wild mountain gorillas, a method that could benefit significantly from the 408 

integration of machine learning for more accurate pattern detection and data interpretation. Bennett 409 

et al. (2021) (49) focused on the local environmental adaptation in Aedesaegypti mosquitoes, 410 

highlighting how genomic variations are linked to environmental factors like climate and 411 
vegetation, which can also be analyzed using AI tools to predict changes in disease dynamics and 412 

vector behavior in forest regions. Kueneman et al. (2021) (50) examined tick microbiomes in 413 

neotropical forest fragments, showing that intrinsic factors such as tick species and life stage 414 

played a crucial role in microbiome composition, a finding that could be further analyzed using AI 415 

to understand microbial interactions better. While these studies indicate the progress made in 416 

applying AI and biotechnology in forest animal research, there is still a vast amount of work 417 

needed to fully explore and utilize AI's potential in this area, particularly in developing new 418 

biotechnological approaches that are specifically tailored to the unique challenges posed by forest 419 

ecosystems and their inhabitants. The diversity of these applications underscores the importance 420 

of AI and ML in enhancing the efficiency and accuracy of forest animal monitoring and highlights 421 
their role in preventing habitat loss, maintaining biodiversity, and ensuring the sustainability of 422 

ecosystems. 423 

4. Conclusion:  424 

The rapid evolution of machine learning and artificial intelligence in animal biotechnology marks 425 

a significant shift toward more efficient, data-driven approaches to managing livestock and 426 

improving agricultural productivity. Traditional methods employed in various domains of Animal 427 

Biotechnology, often involve procedures which are time-consuming, expensive, labor-intensive, 428 

stressful, inconsistent, lack instant and non-invasive solutions. The application of AI and ML in 429 

Animal Biotechnology not only enhance traditional methods but also provide novel solutions for 430 

challenges such as disease detection, breeding optimization, environmental sustainability, 431 
reducing failures and costs as well as improving efficiency. AI-powered systems that integrate 432 

sensors, data analytics, and real-time monitoring allow for more precise management of animal 433 



 

 

health and welfare, reducing the time and resources required for effective disease control and 434 

livestock management. This is especially relevant in developing countries, where agriculture plays 435 

a crucial role in the economy, and technological advancements are key to achieving food security. 436 

In addition to improving disease detection and management, AI and ML play a pivotal role in 437 

optimizing genetic selection. Advanced ML algorithms have enabled researchers to analyze vast 438 

genetic datasets, identify critical genetic traits, and enhance breeding programs. For instance, 439 

studies on bovine genomics and poultry genetics demonstrate how ML can predict desirable traits, 440 

leading to more productive and resilient livestock. Moreover, AI-driven genome editing tools, such 441 
as CRISPR, are paving the way for innovations in animal biotechnology, improving both the 442 

quality and efficiency of breeding programs. 443 

Another vital area of AI application is sustainability in livestock management. Through ML 444 

models, researchers have developed tools to predict livestock emissions, optimize biogas 445 

production, and mitigate environmental impacts. AI also aids in water quality management in 446 

aquaculture, ensuring optimal conditions for fish farming while minimizing resource waste. As the 447 

agricultural sector continues to face challenges related to climate change, AI technologies will play 448 

an increasingly important role in adapting to these environmental pressures, ensuring more 449 

sustainable and resilient food production systems. Overall, the advancements in AI and ML are 450 

transforming animal biotechnology across various fields, from livestock health management to 451 
genetic research and sustainable farming. By harnessing the power of AI, researchers, farmers, and 452 

policymakers can develop more efficient and sustainable practices that contribute to global food 453 

security and animal welfare. The continued integration of these technologies, particularly in 454 

developing regions, will be instrumental in overcoming current and future challenges in 455 

agriculture, making animal biotechnology a critical area for innovation and progress. 456 
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