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Fish species can be identified based on the analysis of 

morphological indices including basic dimension 

parameters and shape index. Several pattern recognition 

methods have been proposed to classify fish species 

through the morphological characteristics of otolith 

outlines. Machine learning methods have been applied in 

various fields, particularly in the differentiation of object 

shapes. Applying machine learning models to identify 

species based on basic dimension parameters and shape 

index of otoliths is highly promising. The purpose of this 

study is to apply machine learning models to classify 

marine fish species, aiming to determine which machine 

learning model and indices are suitable for otolith shape 

classification. A total of 720 samples of left otoliths 

(sagittae) from 12 fish species, with 60 individuals per 

species, were used to develop and evaluate the 

identification model using Python language. For the first 

time, a comparative evaluation of six machine learning 

models and three deep learning models was conducted to 

distinguish 12 fish species in the nearshore areas of 

northern and central Vietnam. The results of this study 

have identified machine learning and deep learning models 

based on high-performing basic dimension parameter 

(BDP) and/or shape index ShI indices for species 

identification. This lays the groundwork for developing 

software for automatic species or population identification 

based on otolith morphological analysis. 
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Introduction 

Otoliths, calcium carbonate structures 

found in bony fishes (excluding lampreys), 

serve the functions of balance and hearing. 

Each fish possesses three pairs of otoliths, 

comprising two smaller pairs (lapilli and 

asteriscii) and one larger pair (the sagitta) 

(Schulz-Mirbach et al., 2014; Santos et al., 

2017). Research indicates that the shape of 

the sagittal otolith is correlated with 

swimming behavior (Volpedo and 

Echeverra, 2003), age determination 

(Hosseini-Shekarabi, 2014), and stock 

distribution (Lombarte and Cruz, 2007; 

Sadighzadeh et al., 2014; Tuset et al., 

2016). Morphometric features of otoliths 

have been widely utilized for species 

differentiation and stock identification 

(Stransky et al., 2008; Tuset et al., 2012; 

Bani et al., 2013; Sadighzadeh et al., 2014; 

Vu et al., 2022; Corrêa et al., 2022). 

Additionally, otoliths retain records of 

individual fish growth and development 

(Hosseini-Shekarabi et al., 2014; Yedier, 

2021). The sagittal otolith shape has been 

extensively employed in species, 

population, and stock identification 

(Osman et al., 2020; Ghanbarifardi and 

Zarei, 2021), often reflecting biological 

uniqueness (Stransky, 2005; Vu and 

Kartavsev, 2020). 

In recent years, otolith morphological 

analysis has been employed for species or 

population differentiation (Portnoy and 

Gold, 2013; He et al., 2017; Vu and 

Kartavsev, 2020). Apart from conventional 

species identification methods like 

morphological analysis and DNA 

sequencing, otolith-based species 

identification proves particularly valuable 

in reconstructing the historical composition 

of fish assemblages in archaeology (Lin et 

al., 2019) or determining fish prey items 

(otoliths remain intact in digestive waste). 

Analysis of sagitta size and shape serves as 

a useful tool for species discrimination and 

population determination (Levia et al., 

1994; Tuset et al., 2003). A recent study 

utilized BDP and ShI indices of otoliths to 

differentiate between Hypomesus japonicus 

and H. nipponensis species (Vu and 

Kartavsev, 2020). Furthermore, otolith 

shape analysis was employed to assess the 

stock structure of European anchovy 

(Engraulis encrasicolus) along the 

Tunisian coast, revealing the presence of 

three distinct stock units with significant 

implications for fisheries management 

(Khemiri et al., 2018). 

Shape indices, including basic 

dimension parameter (BDP) and shape 

index (ShI), are widely utilized to assess 

differences among fish species (Bani et al., 

2013; He et al., 2017; Vu and Kartavsev, 

2020). Various statistical analysis methods 

have been employed to analyze BDP and 

ShI indices, with numerous studies 

evaluating the extent of otolith shape 

differences among fish species. Several 

studies have assessed the classification 

ability based on different shape indices. A 

recent publication by Lin and Al-

Abdulkader (2019) used otolith shape 

analysis to identify species from certain 

families in the western Persian Gulf. This 

study revealed that classification based on 

shape indices still entails error rates, 

necessitating continued evaluation of 

accuracy when applying this method for 

species identification. Additionally, this 

study affirmed a significant increase in 

identification capability when combining 
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shape indices in linear discriminant 

analysis (LDA). Salimi et al. (2016) 

successfully identified 14 fish species using 

the STFT shape index set, achieving 

recognition rates ranging from 70% to 

100%. The authors considered these 

identification results relatively acceptable; 

however, further evaluation of 

identification capability through various 

recognition models is still required. 

Inadequate features to describe otolith 

shape can pose challenges for classifiers 

(Simoneau et al., 2000). Many authors have 

identified species based on common indices 

such as BDP, ShI, and a combination of 

BDP and ShI. BDP comprises length, 

width, perimeter, and area indices 

extensively used in otolith research. These 

indices are frequently employed in species 

classification as well as population 

differentiation. ShI, including circularity, 

roundness, rectangularity, form factor, 

aspect ratio, and ellipticity, are standard 

methods for otolith shape analysis (Burke et 

al., 2009; Keating, 2014; Mapp et al., 

2017). The outcomes of these analyses 

contribute to delineating fish stocks 

(Agüera and Brophy, 2011; Paul et al., 

2013; Ferhani et al., 2021). BDP-ShI 

complexity: Although BDP usage may 

provide effective classification in some 

cases, relying solely on BDP for 

classification may confuse, particularly 

when fish species have similar basic 

dimensions but differing shapes. Thus, 

employing a combination of BDP and ShI 

(BDP-ShI) enhances accuracy. The coastal 

areas surrounding Son Cha Island (Thua 

Thien Hue province) and Cat Ba Island 

(Hai Phong province) constitute regions of 

Vietnam's coastline renowned for their high 

species diversity. Commonly encountered 

species inhabit natural habitats while also 

serving as commercially important food 

sources for humans and prey for 

carnivorous animals in adjacent forest 

ecosystems. Utilizing otoliths for species 

identification offers several advantages, 

including long-term sample storage, 

minimal space requirements, and simple 

preservation methods. Additionally, 

otoliths play a crucial role in studying the 

feeding habits of piscivorous animals, 

significantly contributing to our 

understanding of marine food webs, 

particularly at higher trophic levels (Dürr 

and González, 2002; Garcia–Rodriguez et 

al., 2011). Otoliths are also applied in 

archaeology to identify past fish species 

compositions in ecological histories. 

In recent years, advancements in 

information technology, particularly in 

artificial intelligence (AI), have opened 

new avenues for scientific research. 

Leveraging AI technology for otolith shape 

analysis holds significant promise for 

automated species identification. This 

technology enables the identification of 

species across large sample sizes in a short 

period. In this paper, we aim to utilize AI 

technology to identify the species 

composition of several commercially 

important fish species frequently caught 

around Cat Ba (Hai Phong) and Son Cha 

(Hue) Islands. Our goal is to assess the 

applicability of AI models in developing 

species identification software. 

 

Materials and methods 

Sample collection. Individuals were 

captured by trawling and purchased from 

fishing grounds in two regions around Cat 
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Ba and Son Cha, with samples collected 

from April to June 2024. Fish specimens 

were identified as adults based on body size 

and Fishbase documentation (2024). A total 

of 720 left otoliths were collected for this 

study (Fig. 1). 

 

 

 
Figure 1: Sampling locations of otolith in Son Cha and Cat Ba. The blue stars indicate specific. fishing points 

 

Image acquisition, digitization, and shape 

index 

Each otolith was placed against a black 

background and was standardized by 

positioning them with the rostrum oriented 

to the left (Table. 1). The left sagitta was 

photographed using an Olympus SZ61 

zoom stereo microscope. Digital images of 

otoliths were captured under a 

stereomicroscope using Olympus CellSens 

(version 2.2) with an SC180 camera and 

saved in JPG and BMP formats. The 

characteristics of otoliths were measured 

(in mm) and analyzed based on ShIs. To 

determine the morphometric characteristics 

of otoliths, four basic dimensional 

parameters, namely area (A), perimeter (P), 

otolith width (OW), and otolith length 

(OL), were measured using the CellSens 

(version 2.2). 

 

Table 1: Information on otolith samples of 12 species collected from Son Cha and Cat Ba (Fig. 1). 

STT 

Serial 

number 

Python code 

Species name 
Species 

code 
Image 

Sample 

quantity 

1 0 

Order: Eupercaria incertae 

sedis 

Family: Nemipteridae 

Pentapodus setosus 

(Valenciennes, 1830) 

1CL 

 

60 
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Table 1 (continued): 

STT 
Serial number 

Python code 
Species name Image Sample quantity 

2 1 

Order: Siluriformes 

Family: Plotosidae 

Plotosus lineatus (Thunberg, 1787) 

 

60 

3 2 

Order: Holocentriformes 

Family: Holocentridae 

Sargocentron rubrum (Forsskål, 1775) 

 

60 

4 3 

Order: Gobiiformes 

Family: Gobiidae 

Acentrogobius caninus (Valenciennes 

1837) 
 

60 

5 4 

Order: Carangiformes 

Family: Carangidae 

Selaroides leptolepis (Cuvier, 1833) 

 

60 

6 5 

Order: Mugiliformes 

Family: Mugilidae 

Crenimugil pedaraki (Valenciennes, 

1836) 
 

60 

7 6 

Order: Carangiformes 

Family: Carangidae 

Alepes djedaba 

(Forsskål, 1775) 
 

60 

8 7 

Order: Beloniformes 

Family: Hemiramphidae 

Hemiramphus sp. 

 

60 

9 8 

Order: Eupercaria incertae sedis 

Family: Serranidae 

Cephalopholis boenak 

(Bloch, 1790) 
 

60 

10 9 

Order: Eupercaria incertae sedis 

Family: Serranidae 

Diploprion bifasciatum  

Cuvier, 1828 
 

60 

11 10 

Order: Carangiformes 

Family: Carangidae 

Decapterus macrosoma (Bleeker, 

1851) 
 

60 

12 11 

Order: Perciformes 

Family: Pomacentridae 

Abudefduf bengalensis (Bloch, 1787) 

 

60 

Notes: Python code numbers: These are the codes used for training in Python. In the following sections of 

the article, the sequence number of the Python codes will be used to refer to the species name (using Latin 

names is difficult to follow). 
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Six common ShIs were calculated using the 

ratios of OW, OL, A, and P (Agüera and 

Brophy 2011) as follows: aspect 

ratio=OL/OW; ellipticity = (OL−OW)/ 

(OL+OW); circularity=P2/A; 

rectangularity=A/(OL×OW); 

roundness=4A/OL2; and form 

factor=4×A/P2 (Agüera and Brophy, 2011; 

He et al., 2017). 

The BDP-ShI composite: is created by 

combining the BDP dataset with ShI. 

 

Data analysis 

Use LDA in Python to evaluate the input 

data. 

Use 6 models to train the data. Random 

Forest Classifier (RFC) (Breiman, 2001), 

Extra Trees Classifier (ETC) (Geurts et al., 

2006), Gradient Boosting Classifier (GBC) 

(Friedman, 2001), Bagging Classifier 

(BaC), AdaBoost Classifier (ABC) 

(Solomatine and Shrestha, 2004), Hist 

Gradient Boosting (HGBC) (Pedregosa et 

al., 2011), with the following key 

parameters (Fig. 2):

RFC: (n_estimators=100, 

random_state=42), 

ETC: (n_estimators=100, 

random_state=42), 

GBC: (n_estimators=100, 

random_state=42), 

BaC: (n_estimators=100, 

random_state=42), 

ABC: (n_estimators=100, 

random_state=42),  

HGBC: (max_iter=100, random_state=42).  

Design a deep learning model using the 

Softmax function with classification layers 

models = [Sequential([Dense(64, 

activation='relu', 

input_shape=(X_train.shape[1],)), 

        Dense(64, activation='relu'), 

        Dense(len(df['Sp'].unique()), 

activation='softmax')]), 

Sequential([Dense(128, activation='relu', 

input_shape=(X_train.shape[1],)), 

        Dense(128, activation='relu'), 

        Dense(len(df['Sp'].unique()), 

activation='softmax')]), 

Sequential([Dense(256, activation='relu', 

input_shape=(X_train.shape[1],)), 

        Dense(256, activation='relu'), 

        Dense(len(df['Sp'].unique()), 

activation='softmax') 

 

 
Figure 2: The neural network diagram. 
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Evaluation indicators Formulaic 

description 

Accuracy = (TP+TN)/(TP+FN+FP+TN) 

Precision = TP/(TP+FP) 

Recall = TP/(TP+FN) 

F1-score=(2×Precision×Recall)/(Precision 

+ Recall) 

TP, True positive. TN, True negative. FN, 

False negative. FP, False positive. 

Additionally, the accuracy of the models is 

also evaluated using a confusion matrix. 

 

Results 

Evaluation of BDP input data 

The LDA scatter plot in Figure 3 illustrates 

the input data for AI based on the BDP 

index. This input data was generated by 

measuring 720 samples of 12 species. The 

results show that the data is clustered into 

different groups, with several clusters being 

very clearly classified such as species 0, 5, 

8, and 11, some relatively clear like species 

2, 6, and 10, and some overlapping and 

potentially difficult to classify such as 

species 1, 3, 4, 7, and 9. Thus, the input data 

shows that 33% is clearly grouped, 25% 

relatively clear, and 41.7% overlapping and 

difficult to group. From this data, we will 

conduct experiments with 6 machine 

learning models and 3 deep learning models 

to train the data and evaluate which model 

is suitable for classifying the marine fish 

species collected in this area. 

 

Classification performance using machine 

learning based on BDP 

The classification performance results 

using machine learning based on BDP are 

shown in Figure 4, specifically for each 

model as follows: In analyzing the 

performance of various classifiers on the 

dataset based on BDP, as depicted in Table 

2, the following results were observed. The 

RFC achieved the highest accuracy of 

86.81%, demonstrating robust precision 

(86.91%) and recall (86.81%), resulting in 

a balanced F1-score of 86.70%. Similarly, 

the BaC exhibited competitive performance 

with an accuracy of 85.42%, precision of 

85.46%, recall of 85.42%, and an F1-score 

of 85.17%. The ETC and GBC closely 

followed with accuracies of 84.72%. 

 

 
Figure 3: The LDA scatter plot shows the clustering of input data for the AI models based on BDP, with a 

cumulative explained variance percentage of 83.9%. 
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Figure 4: Heatmap of the confusion matrix for machine learning models based on the BDP. The y-axis 

represents the true species names, while the x-axis represents the predicted results. 
 

 

 

 



 Iranian Journal of Fisheries Sciences 24(2) 2025                                             285 

Table 2: Classification performance using machine learning models based on the BDP according to four 

evaluation metrics (Accuracy, Precision, Recall, F1-score). 

Classifier 
Index assesses accuracy level 

Accuracy Precision Recall F1-score 

RFC 86.81% 86.91% 86.81% 86.70% 

ETC 84.72% 85.40% 84.72% 84.74% 

GBC 84.72% 85.42% 84.72% 84.91% 

BaC 85.42% 85.46% 85.42% 85.17% 

ABC 25.00% 17.50% 25.00% 18.18% 

HGBC 84.72% 86.63% 84.72% 84.83% 

Notes: Random Forest Classifier (RFC), Extra Trees Classifier (ETC), Gradient Boosting Classifier (GBC, 

Bagging Classifier (BaC), AdaBoost Classifier (ABC), Hist Gradient Boosting (HGBC).  
 

While the ETC demonstrated slightly lower 

precision (85.40%) and F1-score (84.74%) 

compared to the GBC (85.42% precision 

and 84.91% F1-score), both classifiers 

maintained consistent recall rates of 

84.72%. The HGBC also achieved an 

accuracy of 84.72%, with higher precision 

(86.63%) and a well-rounded F1-score of 

84.83%. In contrast, the ABC significantly 

underperformed relative to the others, 

attaining only 25% accuracy. Its precision 

was notably low (17.50%), coupled with a 

similarly low recall of 25.00% and an F1-

score of 18.18%. Overall, the RFC and BaC 

demonstrated the most reliable 

performance, while the ABC struggled 

significantly. 

 

The predictive accuracy using machine 

learning based on the BDP 

The classification results using the RFC, as 

shown in Figure 4, indicate that 9 species 

were identified with over 80% accuracy, 

with 6 species achieving 100% accuracy 

(species 0, 2, 5, 6, 8, 11). However, species 

4 and 7 were often confused with each 

other, showing a low identification 

accuracy of 53.3% and a confusion level of 

47.7%. The ETC revealed that 7 species 

were identified with more than 80% 

accuracy, and 5 species achieved perfect 

identification (species 0, 5, 6, 8, 11), while 

species 4 and 7 exhibited high confusion 

levels at 41.7%, with a corresponding 

identification accuracy of 53.3%. The GBC 

results showed that 8 species had an 

identification accuracy above 80%, with 4 

species perfectly classified (species 0, 5, 6, 

8). Two species had a moderate 

identification accuracy of 75% (species 9, 

11), while species 4 and 7 had a high 

confusion rate of 50%, resulting in a low 

identification accuracy of 50%. The BaC 

accurately identified 7 species with more 

than 90% accuracy, and 6 species were 

perfectly classified (species 0, 2, 5, 6, 8, 

11). Two species were moderately 

classified with 75% accuracy (species 1, 

10), while species 4, 7, and 9 had lower 

accuracy, ranging from 50% to 67%. The 

ABC results show that only 2 species were 

classified with 100% accuracy, with the 

remaining species mostly misclassified. 

Lastly, the HGBC identified 8 species with 

over 90% accuracy, with 5 species perfectly 

classified (species 0, 5, 6, 8, 11). One 

species had a moderate classification 

accuracy of 75% (species 3), whereas 

species 1, 4, and 7 had lower accuracy, 

ranging from 50% to 60%. These results 
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illustrate the performance of various 

classifiers as depicted in Figure 4, with 

varying degrees of accuracy and confusion 

among the species. 

The findings regarding the accuracy 

levels of the deep learning models based on 

BDP are depicted in Figure 5. Model 1 

attained the highest accuracy at 77.08%, 

complemented by robust precision 

(83.93%) and recall (77.08%), resulting in 

a harmonious F1-score of 74.11%. 

Similarly, Model 3 demonstrated 

competitive performance, achieving an 

accuracy of 75.69%, a precision of 76.69%, 

and a comprehensive F1-score of 75.32%. 

However, Model 2 displayed inferior 

performance, with an accuracy of only 

70.14% and the lowest F1-score recorded at 

68.75%. Overall, Models 1 and 3 exhibited 

the most robust performance, while Model 

2 lagged significantly behind (Fig. 5). 

 

Predictive accuracy using deep learning 

based on the BDP   

According to the confusion matrix for deep 

learning models based on BDP in Figure 6, 

several key observations can be made. 

Using the Dense 64 model, 8 species were 

identified with 100% accuracy (species: 2, 

4, 5, 6, 8, 9, 10, 11), while 4 species had low 

classification accuracy ranging from 16.7% 

to 66.7%.  

 

 
Figure 5: Classification performance using deep learning models based on the BDP according to four 

evaluation metrics (accuracy, precision, recall, F1-score). 
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Figure 6: Heatmap of the confusion matrix for deep learning models based on BDP. The y-axis represents 

the true species names, while the x-axis represents the predicted results. 

 

The Dense 128 model showed that 5 

species were identified with over 90% 

accuracy, with 4 species achieving perfect 

accuracy (species: 5, 6, 8, 11) and 1 species 

achieving over 90% accuracy (species 10). 

Additionally, species 2 had a moderate 

classification accuracy of 75%, whereas the 

remaining 6 species had a low accuracy 

below 70%, with species 9 being 

completely misclassified as species 1 (0% 

classification rate). Finally, the Dense 256 

model demonstrated that 7 species were 

identified with over 90% accuracy, with 4 

species achieving perfect accuracy 

(species: 6, 8, 10, 11) and 3 species 

achieving over 90% accuracy (species: 0, 2, 

5). All other species (species: 1, 3, 4, 7, 9) 

had low accuracy below 70%. 

Evaluation of input data for the ShI 

The LDA scatter plot illustrates the input 

data for machine learning based on the ShI. 

This input data was generated by 

calculating the ShI for 720 samples from 12 

species (Fig. 7). Unlike the LDA analysis 

results based on BDP, only one cluster 

(species number 8) is clearly distinguished, 

while the other species overlap. 

Specifically, species 1, 9, and 3 form one 

group, and species 0, 2, 4, 5, 6, 7, 10, and 

11 form another group. The machine 

learning results using 6 machine learning 

models and 3 deep learning models to train 

the data are presented below. 
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Figure 7: The LDA scatter plot shows the clustering of input data for the AI models based on ShI, with a 

cumulative explained variance of 91.5%. 
 

Classification performance using machine 

learning based on the ShI 

The findings regarding the accuracy levels 

of the ML models based on ShI are 

presented in Table 3. The RFC achieved an 

accuracy of 53.47%, accompanied by a 

precision of 55.60%, a recall of 53.47%, 

and an F1-score of 53.70%. The HGBC 

attained an accuracy of 52.08%, a precision 

of 56.61%, a recall of 52.08%, and an F1-

score of 52.31%. The BaC and ETC 

exhibited accuracies of 50.69% and 

50.00%, respectively, along with similar 

precision, recall, and F1-scores. The GBC 

demonstrated a comparable accuracy of 

49.31%, a precision of 51.46%, a recall of 

49.31%, and an F1-score of 49.62%. The 

ABC notably underperformed with an 

accuracy of only 23.61%, precision of 

12.05%, recall of 23.61%, and an F1-score 

of 14.04%. 

 

 

Table 3: Classification performance using machine learning models based on the ShI according to four 

evaluation metrics (accuracy, precision, recall, F1-score). 

Classifier 
Index assesses accuracy level 

Accuracy Precision Recall F1-score 

RFC 53.47% 55,60% 53.47% 53.70% 

ETC 50.00% 51.59% 50.00% 50.09% 

GBC 49.31% 51.46% 49.31% 49.62% 

BaC 50.69% 52.09% 50.69% 50.62% 

ABC 23.61% 12.05% 23.61% 14.04% 

HGBC 52.08% 56.61% 52.08% 52.31% 

Notes: Random Forest Classifier (RFC), Extra Trees Classifier (ETC), Gradient Boosting Classifier (GBC, 

Bagging Classifier (BaC), AdaBoost Classifier (ABC), Hist Gradient Boosting (HGBC).  
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The predictive accuracy using machine 

learning based on ShI 

The classification results for the RFC reveal 

that three species were accurately identified 

at a rate exceeding 80%, with two species 

achieving perfect accuracy of 100% 

(species 6 and 8). Conversely, the 

remaining species exhibited notably lower 

identification rates, falling below 60% 

(species 0, 1, 2, 3, 4, 7, 9, 10, 11). Similarly, 

the ETC revealed that three species were 

correctly classified at an accuracy 

surpassing 80%, with two species achieving 

flawless 100% accuracy (species 6 and 8), 

while the remaining species displayed 

inferior identification rates below 60% 

(species 0, 1, 2, 3, 4, 7, 9, 10, 11). The GBC, 

as shown in Figure 8, showed that two 

species were accurately identified at a 

perfect 100% rate (species 6 and 8), with 

one species attaining a moderate accuracy 

level of 75% (species 5), while the 

remaining species exhibited suboptimal 

identification rates below 60% (species 0, 

1, 2, 3, 4, 7, 9, 10, 11). The BaC indicated 

that three species were accurately classified 

at a rate exceeding 80%, with two species 

achieving a pristine accuracy of 100% 

(species 6 and 8), and the remaining species 

displaying notably lower identification 

rates falling below 60% (species 0, 1, 2, 3, 

4, 7, 9, 10, 11). The ABC revealed the 

accurate identification of only two species 

at a perfect rate of 100% (species 0 and 8), 

with one species achieving a classification 

rate of 66.7% (species 9), while the 

remaining species were entirely 

misclassified (species 1, 2, 3, 4, 5, 6, 7, 10, 

11). Lastly, the HGBC (Fig. 8) indicated the 

accurate identification of two species at a 

perfect rate of 100% (species 6 and 8), with 

one species achieving a moderate accuracy 

level of 75% (species 5), while the 

remaining species, totaling nine, displayed 

subpar identification rates below 60% 

(species 0, 1, 2, 3, 4, 7, 9, 10, 11). 
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Figure 8: Heatmap of the confusion matrix for machine learning based on the ShI. The y-axis represents 

the true species names, while the x-axis represents the predicted results. 

 

Classification performance using deep 

learning based on the ShI 

The findings regarding the accuracy levels 

of the deep learning models based on ShI 

are depicted in Figure 9. Model 3 indicated 

the highest accuracy at 53.47%, 

accompanied by a precision of 55.56%, 

recall of 53.47%, and an F1-score of 

50.97%. Despite its relatively higher 

accuracy compared to other models, Model 

3 still struggles to deliver consistently 

accurate classifications, as indicated by its 

F1-score. Model 2 showed the next best 

performance, achieving an accuracy of 

47.22% with a precision of 39.08%, a recall 

of 47.22%, and an F1-score of 41.99%. 

Although Model 2 slightly surpasses Model 

1 in terms of accuracy, its precision is the 

lowest among the three, indicating a higher 

propensity for false positives. Model 1 

exhibited the lowest accuracy at 46.53%, 

with a precision of 41.13%, recall of 

46.53%, and an F1-score of 42.68%. This 

model indicates a marginally better precision 

than Model 2, but overall its predictive 

performance remains weak (Fig. 9).  
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Figure 9: Classification performance using deep learning models based on the ShI according to four 

evaluation metrics (accuracy, precision, recall, F1-score). 

 

The predictive accuracy using deep 

learning models based on the ShI 

The classification results using deep 

learning models, as shown in Figure 10, 

exhibit varying levels of accuracy across 

different species. For Model 1 (Dense 64), 

it demonstrates the ability to classify 2 

species (species 6, 8) with 100% accuracy, 

while achieving a moderate level of 75% 

accuracy for 2 species (species 9, 10). The 

remaining 8 species (species 0, 1, 2, 3, 4, 5, 

7, 11) exhibit low classification accuracy, 

with 2 species (species 1, 2) being 

unclassifiable (0%). In the case of Model 2 

(Dense 128), it also classifies 2 species 

(species 6, 8) with 100% accuracy and 

achieves 75% accuracy for 1 species 

(species 5). However, 9 species (species 0, 

1, 2, 3, 4, 7, 9, 10, 11) show low 

classification accuracy below 70%, with 3 

species (species 2, 4, 9) being unclassifiable 

(0%). Finally, Model 3 (Dense 256) 

indicates the ability to classify 1 species 

(species 8) with 100% accuracy, over 90% 

accuracy for 1 species (species 6), and a 

moderate 75% accuracy for 1 species 

(species 10). The remaining 9 species 

(species 0, 1, 2, 3, 4, 5, 7, 9, 11) exhibit low 

classification accuracy below 70%, with 2 

species (species 2, 4) being unclassifiable 

(0%).  

 

46.53%

41.13%

46.53%

42.68%

47.22%

39.08%

47.22%

41.99%

53.47%

55.56%

53.47%

50.97%

 Accuracy

 Precision

 Recall

 F1-score

 Model 1  Model 2  Model 3



292 Vu et al., Artificial intelligence models for identifying several fish species based on otolith ... 

 

 
Figure 10: Heatmap of the confusion matrix for deep learning models based on ShI. The y-axis represents 

the true species names, while the x-axis represents the predicted results. 

 

Evaluation of input data for the BDP-ShI 

dataset 

The LDA scatter plot illustrates that the 

input data is a complex combination of ShI-

BDP for AI models (Fig. 11). This input 

data was generated by merging the BDP 

and ShI metrics of 720 samples belonging 

to 12 species. The results indicate that the 

data is grouped into distinct clusters, with 

several species being clearly categorized, 

such as species 0, 2, 5, 6, and 8. Some 

species, like 10 and 11, are relatively well-

defined, while others, such as 7, 4, 1, 9, and 

3, exhibit overlapping and may be 

challenging to classify. 
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Figure 11: The LDA scatter plot shows the clustering of input data for the AI models based on BDP-ShI. 

 

Thus, we can observe that the input data 

consists of 41% clearly defined clusters, 

18% relatively well-defined clusters, and 

41% overlapping and challenging-to-

classify clusters. 

 

Classification performance using machine 

learning based on ShI-BDP  

The classifiers' performances using 

machine learning models based on BDP-

ShI show several key observations as 

presented in Table 4. The BaC achieved the 

highest accuracy of 86.11%, accompanied 

by a precision of 86.81%, recall of 86.11%, 

and a matching F1-score of 86.11%. The 

RFC and GBC followed closely, with the 

RFC achieving an accuracy of 84.03% 

(precision: 84.77%, recall: 84.03%, F1-

score: 84.13%) and the GBC reaching an 

accuracy of 84.72% with balanced 

precision, recall, and F1-scores around 

84.59%.  

 

 

Table 4: Classification performance using machine learning models based on the BDP-ShI according to 

four evaluation metrics (accuracy, precision, recall, F1-score). 

Classifier 
Index assesses accuracy level 

Accuracy Precision Recall F1-score 

RFC 84.03% 84.77% 84.03% 84.13% 

ETC 81.25% 81.83% 81.25% 81.18% 

GBC 84.72% 84.72% 84.72% 84.59% 

BaC 86.11% 86.81% 86.11% 86.11% 

ABC 25.00% 17.50% 25% 18.18% 

HGBC 82.64% 83.89% 82.64% 82.64% 

Notes: Random Forest Classifier (RFC), Extra Trees Classifier (ETC), Gradient Boosting Classifier (GBC, 

Bagging Classifier (BaC), AdaBoost Classifier (ABC), Hist Gradient Boosting (HGBC). 

The HGBC and ETC delivered moderate 

results, with the HGBC showing an 

accuracy of 82.64% (precision: 83.89%, 

recall: 82.64%, F1-score: 82.64%) and the 
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ETC achieving an accuracy of 81.25% 

(precision: 81.83%, recall: 81.25%, F1-

score: 81.18%). In contrast, the ABC 

significantly underperformed with an 

accuracy of only 25%, precision of 17.5%, 

recall of 25%, and an F1-score of 18.18%. 

 

The predictive accuracy using machine 

learning based on BDP- ShI 

The classification results using various 

machine learning models based on BDP-

ShI indicate differing levels of accuracy 

(Fig. 12). The RFC accurately identified 7 

species with over 80% accuracy, with 5 

species achieving perfect accuracy of 100% 

(species 0, 5, 6, 8, 11), 2 species with 

moderate accuracy at 75% (species 1, 3), 

and 3 species with low accuracy below 70% 

(species 4, 7, 9). The ETC showed that 7 

species were identified with over 80% 

accuracy, with 6 species at 100% accuracy 

(species 0, 2, 5, 6, 8, 11), while the 

remaining species had accuracy below 70% 

(species 1, 3, 4, 7, 9). The GBC identified 9 

species with over 80% accuracy, including 

6 species at 100% (species 0, 2, 5, 6, 8, 11), 

2 species at 75% (species 1, 3), and 3 

species below 70% (species 4, 7, 9). The 

BaC also identified 9 species with over 

80% accuracy, with 5 species at 100% 

(species 0, 5, 6, 8, 11), 1 species at 75% 

(species 7), and 2 species with accuracy 

between 50% and 68% (species 1, 4). The 

ABC identified only 2 species with 100% 

accuracy (species 5, 8), while the remaining 

species were misclassified. The HGBC 

showed that 8 species had over 80% 

accuracy, with 5 species at 100% (species 

0, 5, 6, 8, 11), and 4 species below 70% 

(species 1, 3, 4, 7).  

 

Classification performance using deep 

learning based on BDP- ShI 

Figure 13 illustrates the results concerning 

the accuracy levels of the deep learning 

models derived from BDP-ShI. Model 1 

demonstrated the highest accuracy at 

77.08%, coupled with a precision of 

83.93%, recall of 77.08%, and an F1-score 

of 74.11%. Model 3 followed closely, 

achieving an accuracy of 75.69% with a 

precision of 76.69%, a recall of 75.69%, 

and an F1-score of 75.32%. Model 2 

exhibited the lowest accuracy at 70.14%. 

 

Accuracy levels using deep learning based 

on BDP-ShI 

The classification results, as shown in 

Figure 14, demonstrate the performance of 

three deep learning models. Model 1 

(Dense 64) shows the ability to classify 8 

species with an accuracy of over 90%, 

including 7 species with perfect 

classification at 100% accuracy (species 2, 

4, 5, 6, 8, 10, 11) and 1 species at a 

moderate accuracy of 75% (species 9). The 

remaining 3 species exhibit classification 

accuracies below 70% (species 0, 1, 7). 

Model 2 (Dense 128) is able to classify 6 

species with 100% accuracy (species 5, 6, 

7, 8, 10, 11), with 1 species at a moderate 

accuracy of 75% (species 2). The other 

species show accuracies below 70% 

(species 0, 1, 3, 4, 9), with species 4 and 9 

being highly confused with each other. 

Model 3 (Dense 256) successfully classifies 

6 species with 100% accuracy (species 0, 2, 

6, 8, 10, 11) and 1 species at an accuracy of 

83.3% (species 5).
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Figure 12: Heatmap of the confusion matrix for machine learning based on the BDP- ShI. The y-axis 

represents the true species names, while the x-axis represents the predicted results. 
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Figure 13: Classification performance using deep learning models based on the BDP-ShI according to four 

evaluation metrics (accuracy, precision, recall, F1-score). 

 

 

 
Figure 14: Heatmap of the confusion matrix for deep learning models based on BDP-ShI. The y-axis 

represents the true species names, while the x-axis represents the predicted results. 
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The remaining 5 species display low 

classification accuracies below 70% 

(species 1, 3, 4, 7, 9). 

 

Discussion 

In recent studies, AI methods, have 

demonstrated significant improvements in 

accuracy and reliability over traditional 

methods in the field of otolith shape 

analysis. AI-based approaches, particularly 

convolutional neural networks (CNNs), 

have been shown to reduce error rates 

substantially. According to a study by Liu 

et al. (2021), deep learning models 

achieved an accuracy of 90.5% in 

identifying fish species based on otolith 

images, compared to a maximum of 75.3% 

accuracy reported with traditional 

geometric methods (Liu et al., 2021). 

Furthermore, traditional methods have been 

reported to have error rates as high as 25% 

due to variability in manual measurements, 

whereas AI methods can significantly 

minimize these errors by automating and 

standardizing the process (Chen et al., 

2022). This evidence highlights the 

enhanced reliability and reduced error rates 

of AI techniques compared to traditional 

methods in otolith shape analysis. 

This study evaluates various machine 

learning and deep learning models for 

species identification using otolith images, 

focusing on accuracy, precision, recall, and 

F1-scores. Models with over 80% accuracy 

are classified as high-performing, while 

those exceeding 75% are seen as having 

practical potential. The analysis highlights 

significant differences in model 

performance, with some excelling in 

accuracy and others showing limitations. 

Evaluation based on the BDP dataset 

demonstrates that species identification 

using five models—RFC, ETC, GBC, BaC, 

and HGBC—achieved overall recognition 

accuracy above 80%. These results surpass 

the classification accuracy obtained with 

LDA on the input data. Among these, the 

RFC model yielded the highest accuracy of 

86.81%, identifying 9 out of 12 species 

with over 80% accuracy. The RFC's 

precision of 86.91% suggests a reliable 

performance in minimizing false positives. 

Its recall rate matches the accuracy, 

indicating the model's strong ability to 

identify a substantial proportion of positive 

cases. With an F1-score of 86.70%, the 

RFC demonstrates a balanced trade-off 

between precision and recall. In contrast, 

the ABC model exhibits the lowest 

accuracy at 25.00%, indicating significant 

difficulties in accurate classification. Its 

precision of 17.50% may lead to a high 

number of false positives, and despite the 

recall rate matching its accuracy, it falls far 

short compared to the other models. The 

ABC's F1-score of 18.18% underscores its 

ineffectiveness in balancing recall and 

precision. The BaC model, with an 

accuracy of 85.42%, performs well, though 

not as strongly as the RFC. Its precision, at 

85.46%, indicates a moderate rate of 

correctly predicting positive instances. The 

recall rate mirrors the accuracy, confirming 

its efficiency in identifying positive cases. 

With an F1-score of 85.17%, the BaC 

demonstrates a good balance between 

precision and recall. These results are 

similar to the findings of Yuwen Chen and 

Guoping Zhu (2023), who used various 

machine learning models to identify four 

species—Chionodraco rastrospinosus, 
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Krefftichthys anderssoni, Electrona 

carlsbergi, and Pleuragramma antarcticum. 

In their study, the RFC model also yielded 

the best performance, while the ABC model 

had the lowest performance. All models 

showed high confusion between species 4 

and species 7. Although the RFC model 

provided the best overall results, it 

performed worse than other models for 

species 9, suggesting that different models 

might be more suitable for specific cases. 

The RFC emerged as the most robust 

model, showing superior performance 

across all metrics, with the BaC following 

closely behind, performing consistently. 

The five models—RFC, ETC, GBC, 

BaC, and HGBC—used for species 

identification based on ShI all resulted in 

overall recognition accuracy below 55%, 

with low accuracy for identifying 

individual species. The accuracy for 

identifying individual species was also low. 

These results are not better than those 

obtained with LDA on the input data. The 

RFC model achieved the highest overall 

accuracy at 53.47%, while the remaining 

models had accuracies ranging from 

49.32% to 52%. All five models exhibited 

high confusion, with only 3 species (5, 6, 8) 

achieving classification levels between 

75% and 100%. These results indicate that 

using ShI alone for species identification is 

not suitable. 

Evaluation based on the combined BDP-

ShI metric demonstrates that species 

identification using the five models—RFC, 

ETC, GBC, BaC, and HGBC—resulted in 

overall recognition accuracy above 80%. 

These recognition results are better than 

those obtained with LDA on the input data. 

Among these models, the BaC achieved the 

highest accuracy of 86.11%, identifying 9 

out of 12 species with over 80% accuracy. 

All models exhibited high confusion with 

species 4. The BaC's highest accuracy of 

86.11% indicates exceptional overall 

performance in predicting correct classes. 

Its precision, at 86.81%, highlights strong 

reliability in minimizing false positives. 

The recall rate matches the accuracy, 

showcasing the model's ability to identify a 

significant proportion of positive cases. 

With an F1-score of 86.11%, the BaC 

strikes an effective balance between 

precision and recall. On the other hand, the 

ABC exhibits the lowest accuracy at 25%, 

implying substantial difficulties in 

classifying instances accurately. Its 

precision, at 17.5%, could result in a high 

number of false positives. While the recall 

rate is consistent with its accuracy, it falls 

considerably short compared to the other 

models. With an F1-score of 18.18%, the 

ABC struggles to balance recall and 

precision. The RFC, with an accuracy of 

84.03%, performs well but not as strongly 

as the BaC. Its precision of 84.77% 

indicates a satisfactory rate of correctly 

predicting positive instances. The recall 

rate matches the accuracy, affirming the 

model's efficiency in identifying positive 

instances. With an F1-score of 84.13%, the 

RFC demonstrates a good balance between 

precision and recall. Similarly, the GBC 

also delivers solid performance, with an 

accuracy of 84.72%. Its precision and recall 

rates are both 84.72%, resulting in an F1-

score of 84.59%. The ETC and HGBC 

exhibit competitive, yet slightly lower, 

accuracies at 81.25% and 82.64%, 

respectively. The ETC maintains consistent 

precision at 81.83% and an F1-score of 
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81.18%. The HGBC achieves a higher 

precision of 83.89%, leading to a balanced 

F1-score of 82.64%. 

The use of deep learning shows that 

species identification using three deep 

learning models—Model 1 (Dense 64), 

Model 2 (Dense 128), and Model 3 (Dense 

256)—all resulted in overall recognition 

accuracy above 70%. These results are 

better than those obtained with LDA on the 

input data. Among these, Model 1 achieved 

the highest accuracy of 77.08% for all 

cases, accurately identifying 8 out of 12 

species with 100% accuracy. Model 1 

achieved the highest accuracy of 77.08%, 

indicating good overall performance in 

predicting correct classes. Its precision, at 

83.93%, suggests reliability in avoiding 

false positives, which is crucial for certain 

applications. The recall rate matches the 

accuracy, indicating the model's capability 

to identify a substantial proportion of 

positive cases. With an F1-score of 74.11%, 

Model 1 demonstrates a balanced trade-off 

between precision and recall. In contrast, 

Model 2 exhibits the lowest accuracy at 

70.14%, implying potential struggles in 

classifying instances accurately. Its 

precision, at 71.68%, may lead to a higher 

number of false positives. While the recall 

rate matches its accuracy, it falls short 

compared to Model 1. With an F1-score of 

68.75%, Model 2 appears less effective in 

balancing recall and precision. Model 3, 

with an accuracy of 75.69%, performs 

reasonably well, albeit not as strongly as 

Model 1. Its precision, at 76.69%, indicates 

a moderate rate of correctly predicting 

positive instances. The recall rate mirrors 

the accuracy, confirming its efficiency in 

identifying positive instances. With an F1-

score of 75.32%, Model 3 demonstrates a 

good balance between precision and recall. 

In conclusion, Model 1 is the most 

effective, showing the best performance 

across all metrics.  

Evaluation based on the ShI metric reveals 

that species identification using three 

models—Model 1 (Dense 64), Model 2 

(Dense 128), and Model 3 (Dense 256)—all 

resulted in overall recognition accuracy 

below 50%. Among these, Model 3 

achieved the highest accuracy, but only 

reached 53.47% for all cases. These results 

indicate that using deep learning based 

solely on the ShI metric for species 

identification is not suitable. 

Evaluation based on the combined BDP-

ShI metric demonstrates that species 

identification using three models—Model 1 

(Dense 64), Model 2 (Dense 128), and 

Model 3 (Dense 256)—all resulted in 

overall recognition accuracy above 70%. 

These results are better than those obtained 

with LDA on the input data. Among these, 

Model 1 achieved the highest accuracy of 

80.56% for all cases, accurately identifying 

8 out of 12 species with over 90% accuracy, 

and 7 out of 12 species with 100% 

accuracy. Model 1 Performance: Model 1 

achieved an accuracy of 80.56%, indicating 

a reliable performance in correctly 

classifying most instances. With a precision 

of 84.48%, Model 1 demonstrates a strong 

ability to make positive predictions 

accurately, minimizing false positives. The 

recall is consistent with the accuracy at 

80.56%, highlighting the model's strong 

ability to identify the most positive 

instances. The F1-score is 78.51%, 

indicating a good balance between 

precision and recall. Model 2 Performance: 
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Model 2 achieved a lower accuracy of 

70.83%, suggesting that it struggles to 

classify instances as effectively as Model 1. 

At 73.99%, Model 2 maintains a relatively 

good level of precision, although lower 

than Model 1, indicating a higher number 

of false positives. The recall is consistent 

with the accuracy at 70.83%, showing that 

the model can identify a reasonable 

proportion of positive cases but not as 

effectively as Model 1. The F1-score is 

67.15%, suggesting a less favorable trade-

off between precision and recall compared 

to Model 1. Model 3 Performance: Model 3 

achieved a higher accuracy of 77.78%, 

which is better than Model 2 but still lower 

than Model 1. Precision stands at 79.22%, 

indicating that Model 3 can identify 

positive instances with relatively high 

accuracy while maintaining a lower false-

positive rate. The recall matches the 

accuracy at 77.78%, indicating that Model 

3 identifies a substantial proportion of 

positive cases. The F1-score is 77.41%, 

showing a well-balanced trade-off between 

precision and recall. Model 1 clearly 

outperforms the other models, achieving 

the highest accuracy and precision while 

maintaining strong recall and F1-scores. 

Model 2 exhibits the lowest performance 

across all metrics, indicating that it requires 

significant improvements to be practical. 

Model 3 delivers a balanced performance, 

although not as strong as Model 1, with 

consistent precision, recall, and F1-scores. 

Overall, the performance results of the 

three deep learning models are quite similar 

to the findings of Salimi (2016), who 

evaluated the performance of various 

machine learning models in identifying 14 

fish species based on otolith contours, with 

performance results ranging from 62% to 

94%.  

The training times for different machine 

learning models ranged from 0.1 to 4.3 

seconds, with GBC taking the longest at 4.3 

seconds for the BDP-ShI complex. The 

other models (HGBC, ABC, BaC, ETC, 

RFC) had training times of less than 0.3 

seconds. The training times for the three 

deep learning models ranged from 4.2 to 

5.6 seconds (Fig. 15). Thus, the training 

times for the deep learning models did not 

differ significantly. In this study, analyzing 

720 otolith samples, the training times for 

all models were under 6 seconds. This short 

training duration does not significantly 

impact the choice of the optimal model for 

practical application (this may change with 

larger datasets). 

 

 
Figure 15: Training Time (Y-axis: Model Names, X-axis: Training Time in Seconds). 

0 1 2 3 4 5 6 7

RandomForestClassifier

GradientBoostingClassifier

AdaBoostClassifier

Model 1

Model 3

BDP-ShI ShI BDP



 Iranian Journal of Fisheries Sciences 24(2) 2025                                   301 

 

Thus, we can conclude the following for 

this study: Using the RFC model based on 

the BDP metric gives the best results for 

species identification. However, it can be 

challenging in some cases when species 

have similar otolith sizes. Using the BaC 

model based on the BDP-ShI complex 

provides the best and most comprehensive 

results for species identification using 

otolith analysis. This is because the BDP-

ShI complex can minimize the dependence 

on similar sizes among species. The RFC 

model based on the BDP-ShI also gives 

stable results and its classification is not 

much different from the BaC model. Both 

models have potential for practical 

application. Using Model 1 (Dense 64) 

based on either the BDP metric or the BDP-

ShI complex gives good results for species 

identification and can be applied in 

practice. Model 3 (Dense 256) also shows 

potential for classification due to its 

relatively high accuracy in species 

identification. Using the ShI metric alone 

for species identification with machine 

learning and deep learning models results in 

low accuracy and is not suitable for 

practical application. 
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