- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424.
- Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases. 2022.
- Higano CS. Sipuleucel-T: autologous cellular immunotherapy for metastatic castration-resistant prostate cancer. Drug Management of Prostate Cancer. 2010:321-8.
- Sadr S, Yousefsani Z, Simab PA, Alizadeh AJR, Lotfalizadeh N, Borji H. Trichinella spiralis as a potential antitumor agent: An update. World's Veterinary Journal. 2023;13(1):65-74.
- Lotfalizadeh N, Sadr S, Morovati S, Lotfalizadeh M, Hajjafari A, Borji H. A potential cure for tumor‐associated immunosuppression by Toxoplasma gondii. Cancer Reports. 2024;7(2):e1963.
- Naseri A, Matoofi A, Mansouri Ramezani M, Kalantari L, Taherzadeh Amlashi T, Roudaki S, et al. Comprehensive analysis of Papillomavirus (PV) and its implications in cancer: Bridging the gap between human and veterinary medicine. Archives of Razi Institute. 2024.
- Ameli N, Babazadeh D, Seifdavati B, Gevarigz Sangar S, Babayi MM, Soltani D, et al. Utilizing Aspergillus Fungi, a Significant Veterinary Pathogen, in Lung Cancer Treatment: A Novel Approach. Archives of Razi Institute. 2024.
- Rajaei N, Faraji N, Khabaz PB, Yousefi M, Khavidaki NL, Omranzadeh A. The Role of Newcastle Disease Virus in Cancer Therapy: A Systematic Review. Journal of World's Poultry Research. 2023;13(4):373-85.
- Sadr S, Borji H. Echinococcus granulosus as a promising therapeutic agent against triplenegative breast cancer. Current Cancer Therapy Reviews. 2023;19(4):292-7.
- Zhou S, Gravekamp C, Bermudes D, Liu K. Tumour-targeting bacteria engineered to fight cancer. Nature Reviews Cancer. 2018;18(12):727-43.
- Flickinger Jr JC, Rodeck U, Snook AE. Listeria monocytogenes as a vector for cancer immunotherapy: current understanding and progress. Vaccines. 2018;6(3):48.
- Yang M, Yang F, Chen W, Liu S, Qiu L, Chen J. Bacteria-mediated cancer therapies: opportunities and challenges. Biomaterials Science. 2021;9(17):5732-44.
- Pizarro-Cerdá J, Kühbacher A, Cossart P. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harbor perspectives in medicine. 2012;2(11):a010009.
- Aubry C, Corr SC, Wienerroither S, Goulard C, Jones R, Jamieson AM, et al. Both TLR2 and TRIF contribute to interferon-β production during Listeria infection. PloS one. 2012;7(3):e33299.
- Köster S, Van Pee K, Hudel M, Leustik M, Rhinow D, Kühlbrandt W, et al. Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation. Nature communications. 2014;5(1):3690.
- Tattoli I, Sorbara MT, Yang C, Tooze SA, Philpott DJ, Girardin SE. Listeria phospholipases subvert host autophagic defenses by stalling pre‐autophagosomal structures. The EMBO journal. 2013;32(23):3066-78.
- Miles BA, Monk BJ, Safran HP. Mechanistic insights into ADXS11-001 human papillomavirus-associated cancer immunotherapy. Gynecologic oncology research and practice. 2017;4:1-12.
- Lambrechts A, Gevaert K, Cossart P, Vandekerckhove J, Van Troys M. Listeria comet tails: the actin-based motility machinery at work. Trends Cell Biol. 2008;18(5):220-7.
- Sleator RD, Watson D, Hill C, Gahan CGM. The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology (Reading). 2009;155(Pt 8):2463-75.
- Broeker NP. Listeria monocytogenes inlA/inlB as possible drug delivery systems. Wiley Online Library; 2013.
- Yang Y, Hou J, Lin Z, Zhuo H, Chen D, Zhang X, et al. Attenuated Listeria monocytogenes as a cancer vaccine vector for the delivery of CD24, a biomarker for hepatic cancer stem cells. Cellular & Molecular Immunology. 2014;11(2):184-96.
- Wallecha A, Wood L, Pan Z-K, Maciag PC, Shahabi V, Paterson Y. Listeria monocytogenes-derived listeriolysin O has pathogen-associated molecular pattern-like properties independent of its hemolytic ability. Clinical and Vaccine Immunology. 2013;20(1):77-84.
- Campillo-Navarro M, Leyva-Paredes K, Donis-Maturano L, González-Jiménez M, Paredes-Vivas Y, Cerbulo-Vázquez A, et al. Listeria monocytogenes induces mast cell extracellular traps. Immunobiology. 2017;222(2):432-9.
- Mirzaei R, Saei A, Torkashvand F, Azarian B, Jalili A, Noorbakhsh F, et al. Identification of proteins derived from Listeria monocytogenes inducing human dendritic cell maturation. Tumor Biology. 2016;37:10893-907.
- Wood LM, Guirnalda PD, Seavey MM, Paterson Y. Cancer immunotherapy using Listeria monocytogenes and listerial virulence factors. Immunologic research. 2008;42:233-45.
- Liang ZZ, Sherrid AM, Wallecha A, Kollmann TR. Listeria monocytogenes: a promising vehicle for neonatal vaccination. Human vaccines & immunotherapeutics. 2014;10(4):1036-46.
- Vinodhini K, Shanmughapriya S, Das BC, Natarajaseenivasan K. Prevalence and risk factors of HPV infection among women from various provinces of the world. Archives of gynecology and obstetrics. 2012;285:771-7.
- Tewari KS, Java JJ, Gatcliffe TA, Bookman MA, Monk BJ. Chemotherapy-induced neutropenia as a biomarker of survival in advanced ovarian carcinoma: an exploratory study of the gynecologic oncology group. Gynecologic oncology. 2014;133(3):439-45.
- Basu P, Mehta A, Jain M, Gupta S, Nagarkar RV, John S, et al. A randomized phase 2 study of ADXS11-001 Listeria monocytogenes–Listeriolysin O immunotherapy with or without cisplatin in treatment of advanced cervical cancer. International Journal of Gynecologic Cancer. 2018;28(4).
- Wallecha A, French C, Petit R, Singh R, Amin A, Rothman J. Lm-LLO-based immunotherapies and HPV-associated disease. Journal of oncology. 2012;2012.
- Zhao KN, Chen J. Codon usage roles in human papillomavirus. Reviews in medical virology. 2011;21(6):397-411.
- Duan F, Chen J, Yao H, Wang Y, Jia Y, Ling Z, et al. Enhanced therapeutic efficacy of Listeria-based cancer vaccine with codon-optimized HPV16 E7. Human Vaccines & Immunotherapeutics. 2021;17(6):1568-77.
- Qian Y, Zhang N, Jiang P, Chen S, Chu S, Hamze F, et al. Inhibitory effect of live-attenuated Listeria monocytogenes-based vaccines expressing MIA gene on malignant melanoma. Journal of Huazhong University of Science and Technology [Medical Sciences]. 2012;32:591-7.
- Maciag PC, Seavey MM, Pan Z-K, Ferrone S, Paterson Y. Cancer immunotherapy targeting the high molecular weight melanoma-associated antigen protein results in a broad antitumor response and reduction of pericytes in the tumor vasculature. Cancer research. 2008;68(19):8066-75.
- Vitiello M, Evangelista M, Di Lascio N, Kusmic C, Massa A, Orso F, et al. Antitumoral effects of attenuated Listeria monocytogenes in a genetically engineered mouse model of melanoma. Oncogene. 2019;38(19):3756-62.
- Lim JY, Brockstedt DG, Lord EM, Gerber SA. Radiation therapy combined with Listeria monocytogenes-based cancer vaccine synergize to enhance tumor control in the B16 melanoma model. Oncoimmunology. 2014;3(6):e29028.
- Kim S, Castro F, Gonzalez D, Maciag P, Paterson Y, Gravekamp C. Mage-b vaccine delivered by recombinant Listeria monocytogenes is highly effective against breast cancer metastases. British journal of cancer. 2008;99(5):741-9.
- Singh M, Quispe-Tintaya W, Chandra D, Jahangir A, Venkataswamy M, Ng T, et al. Direct incorporation of the NKT-cell activator α-galactosylceramide into a recombinant Listeria monocytogenes improves breast cancer vaccine efficacy. British journal of cancer. 2014;111(10):1945-54.
- Singh M, Ramos I, Asafu‐Adjei D, Quispe‐Tintaya W, Chandra D, Jahangir A, et al. Curcumin improves the therapeutic efficacy of L isteriaat‐M age‐b vaccine in correlation with improved T‐cell responses in blood of a triple‐negative breast cancer model 4T1. Cancer medicine. 2013;2(4):571-82.
- Valenzuela J, Schmidt C, Mescher M. The roles of IL-12 in providing a third signal for clonal expansion of naive CD8 T cells. The Journal of Immunology. 2002;169(12):6842-9.
- Clancy E. ACS Report Shows Prostate Cancer on the Rise, Cervical Cancer on the Decline. Renal & Urology News. 2023:NA-NA.
- Stein MN, Fong L, Tutrone R, Mega A, Lam ET, Parsi M, et al. ADXS31142 immunotherapy±pembrolizumab treatment for metastatic castration-resistant prostate cancer: open-label phase I/II KEYNOTE-046 study. The oncologist. 2022;27(6):453-61.
- Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P, et al. Roles for Nkx3. 1 in prostate development and cancer. Genes & development. 1999;13(8):966-77.
- Hassan R, Alley E, Kindler H, Antonia S, Jahan T, Honarmand S, et al. Clinical response of live-attenuated, Listeria monocytogenes expressing mesothelin (CRS-207) with chemotherapy in patients with malignant pleural mesothelioma. Clinical Cancer Research. 2019;25(19):5787-98.
- Singh R, Wallecha A. Cancer immunotherapy using recombinant Listeria monocytogenes: transition from bench to clinic. Human vaccines. 2011;7(5):497-505.
- Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes–expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. Journal of clinical Oncology. 2015;33(12):1325.
- Schuchat A. Infections caused by Listeria monocytogenes. Harrison's Principles of Internal Medicine. 2001.
- Oladejo M, Paulishak W, Wood L, editors. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Seminars in Cancer Biology; 2023: Elsevier.
- Cruz MS, Diamond A, Russell A, Jameson JM. Human αβ and γδ T cells in skin immunity and disease. Frontiers in immunology. 2018;9:368640.
- Ding Y-D, Shu L-Z, Deng H. Listeria monocytogenes: a promising vector for tumor immunotherapy. Frontiers in Immunology. 2023;14:1278011.
|