Ahmadian, E. and Motasharezadeh, B., 2016. Study heavy metals concentration changes and ecological index pollution soils around charcoal mine Geland-roud Mazandaran Province. Land Management Journal, 3(2): 73-81. https://doi.org/10.22092/lmj.2016.106051
Akhani, H., 2006. Biodiversity of halophytic and sabkha ecosystems in Iran. Sabkha Ecosystems In: Series Tasks for Vegetation Science, 42: 71-88. https://doi.org/10.1007/978-1-4020-5072-5_6
Alaboudi, K.A., Ahmed, B., Brodie, G., 2018. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agricultural Sciences, 63:123-127. https://doi.org/10.1016/j.aoas.2018.05.007
Ali, H., Khan, E. and Sajad, M.A., 2013. Phytoextraction of heavy metals–Concepts and applications. Chemosphere, 91: 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075
Boonyapookana, B., Upatham, E.S., Kruatrachne, M., Pokethitiyook, P. and Singhakaew, S., 2002. Phytoaccumulation and phytotoxicity of cadmium and chromium in Duckweed Wolffia globose. International Journal of Phytoremediation, 4: 87-100. https://doi.org/10.1080/15226510208500075
Caparrós, P.G., Ozturk, M., Gul, A., Batool, T.S., Pirasteh-Anosheh, H., Unal, B.T., Altay, V. and Toderich, K.N. 2022. Halophytes have potential as heavy metal phytoremediators: A comprehensive review. Environmental Environmental and Experimental Botany, 193, 104666. https://doi.org/10.1016/j.envexpbot.2021.104666
Favas, P.J.C., Pratas, J. and Prasad, M.N.V., 2012. Accumulation of arsenic by aquatic plants in large-scale field conditions: Opportunities for phytoremediation and bioindication. Science of the Total Environment, 433: 390-397. https://doi.org/10.1016/j.scitotenv.2012.06.091
Ghazanfari Moghadam, M.S. and Orai, J., 2018. Investigating the distribution of copper element in soil under the influence of Midok copper mining activities (Shahrbabak). Environmental Science and Technology, 21(2): 101-110. https://doi.org/10.22034/jest.2019.13955
Ghorbanian, D., Zandi Esfahan, E. and Bahadori, F., 2019. Investigation and comparison of bioethanol production potential from biomass and structural and non-structural carbohydrate reserves of species Suaeda vermiculata, Halocnemum strobilaceum and Seidlitzia rosmarinus. Iranian Journal of Range and Desert Research, 26(2): 340-351. https://doi.org/10.22092/ijrdr.2019.119356
Hakanson, L.‚ 1980. An ecological risk index for aquatic pollution control‚ a sedimentological Approach‚ Water Research‚ 14(8): 975– 1001. https://doi.org/10.1016/0043-1354(80)90143-8
Hamidian, A.H., Atashgahi, M. and Khorasani, N., 2014. Phytoremediation of heavy metals (Cd, Pd and V) in gas refinery wastewater using common reed (Phragmites australis). International Journal of Aquatic Biology, 2: 29-35. https://doi.org/10.22034/ijab.v2i1.21
Jarup, L., 2003. Hazards of heavy metal contamination. British Medical Bulletin, 68: 167–182. https://doi.org/10.1093/bmb/ldg032
Kabata-Pendias, A. and Pendias, H., 2001. Trace elements in soils and plants. CRC Press, LLC, Boca Raton, 413 p. https://doi.org/10.1201/b10158
Khan, M.A., Ansari, R., Gul, B. and Qadir, M., 2006. Crop diversification through halophyte production on salt prone land resources. CAB Rev. Perspect. Agric. Vet. Sci. Nutri. Nat. Resour., 48: 1–8. https://doi.org/10.1079/PAVSNNR20061048
Martinez-Sanchez, M., Garcia-Lorenzo, M., Perez-Sirvent, C. and Bench J. 2012. Trace element accumulation in plants from an aridic area affected by mining activities. Journal of Geochemical Exploration, 123: 8-12. https://doi.org/10.1016/j.gexplo.2012.01.007
Mattina, M.J.I., Lannucci-Berger, W., Musante, C. and White, J.C., 2003. Concurrent plant uptake of heavy metal and persistent organic pollutants from soil. Environmental Pollution, 124: 375-378. https://doi.org/10.1016/S0269-7491(03)00060-5
Merian, E., Anke, M., Ihnat, M. and Stoeppler, M., 2004. Elements and their compounds in the environment, occurrence, analysis and biological relevance. Wiley‐VCH Verlag GmbH & Co. KgaA, 1773 p. https://doi.org/10.1002/9783527619634
Muller, G.‚ 1979. Index of geoaccumulation in sediments of the Rhine River. Geo Journal‚ 2: 108– 118.
Munns, R. and Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59: 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Olsson, P.A., Thingstrup, I., Jakobsen, I. and Baath, E., 1999. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biology and Biochemistry, 31(13): 1879-1887. https://doi.org/10.1016/S0038-0717(99)00119-4
Pirasteh-Anosheh, H., Piernik, A., Łuczak, K., Mendyk, Ł. and Hulisz, P., 2023a. The behavior of potentially toxic elements in the technogenic soil-plant system: A study of Salicornia europaea L. from sites affected by the soda industry. Ecological Modelling, 486, 110517. https://doi.org/10.1016/j.ecolmodel.2023.110517
Pirasteh-Anosheh, H., Ranjbar, G., Akram, N. A., Ghafar, M. A. and Panico, A., 2023b. Forage potential of several halophytic species grown on saline soil in arid environments. Environmental Research, 219: 114954. https://doi.org/10.1016/j.envres.2022.114954
Shafiei, N., Shirani, H. and Esfandiarpour, A., 2012. The enrichment of arsenic and selenium in the soils around the Sarcheshmeh copper mine. Journal of Soil Management. 2 (2): 1-10.
Zandi Esfahan, E., Jafari, A.A. and Mohebby, A., 2015. A comparison on potential of ligno-cellulosic biomass for ethanol production from halophyte species in desert regions Case study: Atriplex leucoclada and Suaeda vermiculata. Desert Ecosystem Engineering, 4(8): 25-34.