Alizamir, M., Sobhanardakani, S., 2018. An Artificial Neural Network - Particle Swarm Optimization (ANN- PSO) approach to predict heavy metals contamination in groundwater resources. Jundishapur J. Health Sci. 10(2), e67544. doi: 10.5812/jjhs.67544.
Alpa, M., Cigizoglu H.K., 2007. Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environ. Model. Software 22(1), 2-13.
Aytek, A., Kisi, O., 2008. A genetic programming approach to suspended sediment modeling. J. Hydrol. 351(3-4), 288–298.
Chiang, J.L., Tsai, K.J., Chen, Y.R., Lee, M.H., Sun, J.W., 2014. Suspended sediment load prediction using support vector machines in the Goodwin Creek experimental watershed. In EGU General Assembly Conference Abstracts, 16, 5285.
Cobaner, M., Unal, B., Kisi, O., 2009. Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data. J. Hydrol. 367(1-2), 52-61.
Ebrahimi, H., Jabbari, E., Ghasemi, M., 2013. Application of honey-bees mating optimizationalgorithm on estimation of suspended sediment concentration. World Appli. Sci. J. 22(11), 1630-1638.
Guo, W., Wang, H., 2010. August PSO optimizing neural network for the Yangtze river sediment entering estuary prediction. In 2010 6th International Conference on Natural Computation, 4, 1769-1772 pages.
Guven, A., Kişi, O., 2011. Estimation of suspended sediment yield in natural rivers using machine-coded linear genetic programming. Water Resour. Manage. 25(2), 691-704.
Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Network. 2(5), 359-366.
Kisi, O., Fedakar, H.I., 2014. Modeling of suspended sediment concentration carried in natural streams using fuzzy genetic approach. Computational Intelligence Techniques in Earth and Environmental Sciences, Springer Netherlands, 175-196.
Kohonen, T., 1998. The self-organizing map. Neurocomput. 21(1), 1-6.
Kuok, K.K., Harun, S., Shamsuddin, S.M., 2010. Particle swarm optimization feedforward neural network for modeling runoff. Int. J. Environ. Sci. Technol. 7, 67-78.
Li, X., Nour, M.H., Smith, D.W., Prepasc, A.A., 2010. Neural networks modeling of nitrogen export: model development and application to unmonitored boreal forest watersheds. Environ. Technol. 31(5), 495-510.
May, R.J., Maier, H.R., Dandy, G.C., 2010. Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Network. 23(2), 283-294.
Rajaee, T., Mirbagheri, S.A., Zounemat-Kermani, M., Nourani, V., 2009. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci. Total Environ. 407(17), 4916-4927.
Shah Hosseini, H., Mousavi Mirkalai, S.M.R., Molajafari, M., 2018. Evolutionary algorithms; Fundamentals, applications and implementation. Publications of the University of Science and Technology. 590 pages.
Tabatabaei, M., Salehpour Jam, A., 2017. Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network. Caspian J. Environ. Sci. 15(4), 387-401.
Tayfur, G., 2012. Soft computing in water resources engineering-artifical neural networks, fuzzy logic and genetic algorithms. WIT Press, Southampton, England, UK, 267 pages.
Ulke, A., Tayfur, G., Ozkul, S., 2009. Predicting suspended sediment loads and missing data for Gediz River, Turkey. J. Hydrol. Engin. 14(9), 954-965.
Yarkiani, A., 2019. Intelligent systems (volumes 1 and 2). Publication of Pouyesh Andisheh. 438 pages.
Zhua, Y.M., Lua, X.X., Zhoub, Y., 2007. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphol. 84(1-2), 111–125.
Zounemat-Kermani, M., Kişi, O., Adamowski, J., Ramezani-Charmahineh, A., 2016. Evaluation of data driven models for river suspended sediment concentration modeling. J. Hydrol. 16(2), pages 1-40.