- Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. Journal of nanobiotechnology. 2021;19(1):59.
- Taghizadeh MS, Niazi A, Afsharifar A. Virus-like particles (VLPs): A promising platform for combating against Newcastle disease virus. Vaccine: X. 2024;16:100440.
- Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-like particles: revolutionary platforms for developing vaccines against emerging infectious diseases. Frontiers in microbiology. 2022;12:790121.
- Martins SA, Santos J, Silva RD, Rosa C, Cabo Verde S, Correia JD, et al. How promising are HIV-1-based virus-like particles for medical applications. Frontiers in Cellular and Infection Microbiology. 2022;12:997875.
- Mohsen MO, Bachmann MF. Virus-like particle vaccinology, from bench to bedside. Cellular & molecular immunology. 2022;19(9):993-1011.
- Travassos R, Martins SA, Fernandes A, Correia JD, Melo R. Tailored viral-like particles as drivers of medical breakthroughs. International Journal of Molecular Sciences. 2024;25(12):6699.
- Mohsen MO, Gomes AC, Vogel M, Bachmann MF. Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccines. 2018;6(3):37.
- Gupta R, Arora K, Roy SS, Joseph A, Rastogi R, Arora NM, et al. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Frontiers in immunology. 2023;14:1123805.
- Yan D, Wei Y-Q, Guo H-C, Sun S-Q. The application of virus-like particles as vaccines and biological vehicles. Applied Microbiology and Biotechnology. 2015;99(24):10415-32.
- Fuenmayor J, Gòdia F, Cervera L. Production of virus-like particles for vaccines. New biotechnology. 2017;39:174-80.
- Roldão A, Silva A, Mellado M, Alves P, Carrondo M. Viruses and virus-like particles in biotechnology: fundamentals and applications. Comprehensive biotechnology. 2019:633.
- Brémaud E, Favard C, Muriaux D. Deciphering the assembly of enveloped viruses using model lipid membranes. Membranes. 2022;12(5):441.
- Rohovie MJ, Nagasawa M, Swartz JR. Virus‐like particles: Next‐generation nanoparticles for targeted therapeutic delivery. Bioengineering & translational medicine. 2017;2(1):43-57.
- Wang Y, Douglas T. Protein nanocage architectures for the delivery of therapeutic proteins. Current Opinion in Colloid & Interface Science. 2021;51:101395.
- Fu Y, Li J. A novel delivery platform based on Bacteriophage MS2 virus-like particles. Virus Research. 2016;211:9-16.
- He J, Yu L, Lin X, Liu X, Zhang Y, Yang F, et al. Virus-like particles as nanocarriers for intracellular delivery of biomolecules and compounds. Viruses. 2022;14(9):1905.
- Naskalska A, Heddle JG. Virus-like particles derived from bacteriophage MS2 as antigen scaffolds and RNA protective shells. Nanomedicine. 2024;19(12):1103-15.
- Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Molecular cancer. 2023;22(1):106.
- Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS nano. 2011;5(7):5729-45.
- Lino CA, Caldeira JC, Peabody DS. Display of single-chain variable fragments on bacteriophage MS2 virus-like particles. Journal of nanobiotechnology. 2017;15(1):13.
- Kolesanova E, Melnikova M, Bolshakova T, Rybalkina EY, Sivov I. Bacteriophage MS2 as a tool for targeted delivery in solid tumor chemotherapy. Acta Naturae (англоязычная версия). 2019;11(2 (41)):98-101.
- Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Advanced Drug Delivery Reviews. 2020;156:214-35.
- Hajeri PB, Sharma NS, Yamamoto M. Oncolytic adenoviruses: strategies for improved targeting and specificity. Cancers. 2020;12(6):1504.
- SM Wold W, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Current gene therapy. 2013;13(6):421-33.
- Wang M, Bergès R, Malfanti A, Préat V, Bastiancich C. Local delivery of doxorubicin prodrug via lipid nanocapsule–based hydrogel for the treatment of glioblastoma. Drug delivery and translational research. 2024;14(12):3322-38.
- Zeng Q, Wen H, Wen Q, Chen X, Wang Y, Xuan W, et al. Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials. 2013;34(19):4632-42.
- Chou M-I, Hsieh Y-F, Wang M, Chang JT, Chang D, Zouali M, et al. In vitro and in vivo targeted delivery of IL-10 interfering RNA by JC virus-like particles. Journal of biomedical science. 2010;17(1):51.
- Galaway FA, Stockley PG. MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Molecular pharmaceutics. 2013;10(1):59-68.
- Facciolà A, Visalli G, Laganà P, La Fauci V, Squeri R, Pellicanò G, et al. The new era of vaccines: the" nanovaccinology". European Review for Medical & Pharmacological Sciences. 2019;23(16).
- Hadj Hassine I, Ben M'hadheb M, Almalki MA, Gharbi J. Virus‐like particles as powerful vaccination strategy against human viruses. Reviews in Medical Virology. 2024;34(1):e2498.
- Parkin DM. The global health burden of infection‐associated cancers in the year 2002. International journal of cancer. 2006;118(12):3030-44.
- Vahdat MM, Hemmati F, Ghorbani A, Rutkowska D, Afsharifar A, Eskandari MH, et al. Hepatitis B core-based virus-like particles: A platform for vaccine development in plants. Biotechnology Reports. 2021;29:e00605.
- Wang JW, Roden RB. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert review of vaccines. 2013;12(2):129-41.
- Zhao H, Zhou X, Zhou Y-H. Hepatitis B vaccine development and implementation. Human vaccines & immunotherapeutics. 2020;16(7):1533-44.
- Shouval D, Ilan Y, Adler R, Deepen R, Panet A, Even-Chen Z, et al. Improved immunogenicity in mice of a mammalian cell-derived recombinant hepatitis B vaccine containing pre-S1 and pre-S2 antigens as compared with conventional yeast-derived vaccines. Vaccine. 1994;12(15):1453-9.
- Fleites YA, Aguiar J, Cinza Z, Bequet M, Marrero E, Vizcaíno M, et al. HeberNasvac, a therapeutic vaccine for chronic hepatitis b, stimulates local and systemic markers of innate immunity: Potential use in SARS-CoV-2 postexposure prophylaxis. Euroasian journal of hepato-gastroenterology. 2021;11(2):59.
- Braun M, Jandus C, Maurer P, Hammann‐Haenni A, Schwarz K, Bachmann MF, et al. Virus‐like particles induce robust human T‐helper cell responses. European journal of immunology. 2012;42(2):330-40.
- Deo VK, Kato T, Park EY. Chimeric virus-like particles made using GAG and M1 capsid proteins providing dual drug delivery and vaccination platform. Molecular pharmaceutics. 2015;12(3):839-45.
- Manjunath N, Wu H, Subramanya S, Shankar P. Lentiviral delivery of short hairpin RNAs. Advanced drug delivery reviews. 2009;61(9):732-45.
- Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Frontiers in oncology. 2020;10:1387.
- Dong W, Kantor B. Lentiviral vectors for delivery of gene-editing systems based on CRISPR/Cas: current state and perspectives. Viruses. 2021;13(7):1288.
- Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery systems for nucleic acids and proteins: Barriers, cell capture pathways and nanocarriers. Pharmaceutics. 2021;13(3):428.
- Puhl DL, D’Amato AR, Gilbert RJ. Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors. Brain research bulletin. 2019;150:216-30.
- Agranovsky A. Enhancing capsid proteins Capacity in plant virus-vector interactions and virus transmission. Cells. 2021;10(1):90.
- Peyret H, Steele JF, Jung J-W, Thuenemann EC, Meshcheriakova Y, Lomonossoff GP. Producing vaccines against enveloped viruses in plants: Making the impossible, difficult. Vaccines. 2021;9(7):780.
- Naso MF, Tomkowicz B, Perry III WL, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31(4):317-34.
- Czapar AE, Steinmetz NF. Plant viruses and bacteriophages for drug delivery in medicine and biotechnology. Current opinion in chemical biology. 2017;38:108-16.
- Malanchere-Bres E, Payette P, Mancini M, Tiollais P, Davis H, Michel M-L. CpG oligodeoxynucleotides with hepatitis B surface antigen (HBsAg) for vaccination in HBsAg-transgenic mice. Journal of Virology. 2001;75(14):6482-91.
- Hoffmann DB, Gruber J, Böker KO, Deppe D, Sehmisch S, Schilling AF, et al. Effects of RANKL knockdown by virus-like particle-mediated RNAi in a rat model of osteoporosis. Molecular Therapy Nucleic Acids. 2018;12:443-52.
- An M, Raguram A, Du SW, Banskota S, Davis JR, Newby GA, et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nature biotechnology. 2024;42(10):1526-37.
- Liu S, Hu M, Liu X, Liu X, Chen T, Zhu Y, et al. Nanoparticles and antiviral vaccines. Vaccines. 2023;12(1):30.
- Dai S, Wang H, Deng F. Advances and challenges in enveloped virus-like particle (VLP)-based vaccines. Journal of Immunological Sciences. 2018;2(2).
- Hsieh S-C, Liu I-J, King C-C, Chang G-J, Wang W-K. A strong endoplasmic reticulum retention signal in the stem–anchor region of envelope glycoprotein of dengue virus type 2 affects the production of virus-like particles. Virology. 2008;374(2):338-50.
- Ponndorf D, Meshcheriakova Y, Thuenemann EC, Dobon Alonso A, Overman R, Holton N, et al. Plant‐made dengue virus‐like particles produced by co‐expression of structural and non‐structural proteins induce a humoral immune response in mice. Plant Biotechnology Journal. 2021;19(4):745-56.
- Joung JK, Cabeceiras P. Enhanced virus-like particles and methods of use thereof for delivery to cells. Google Patents. 2025.
|