ABDELKHALEK, A., S.H. QARI, M.A.A. ABU-SAIED, A.M. KHALIL, H.A. YOUNES, Y. NEHELA and S.I. BEHIRY, 2021. Chitosan nanoparticles inactivate alfalfa mosaic virus replication and boost innate immunity in Nicotiana glutinosa plants. Plants (Basel), 10(12): 2701. DOI: http://doi.org/10.3390/plants10122701
ABDEL-LATIF, A., R. BADR, I. HASSAN and G. OSMAN, 2018. Effect of Ulva lactuca aqueous extract on growth, minerals, chlorophyll content, rubisco activity and rubisco activase in Zea mays seedlings. Journal of Pure and Applied Microbiology, 12(2): 611-622. DOI: http://doi.org/10.22207/jpam.12.2.19
BALZARINI, J, 2007. Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nature Reviews Microbiology, 5: 583. DOI: http://doi.org/10.1038/nrmicro1707
BATEMAN, J. G. and S. R. CHANT, 1979. A modification of the polyethylene glycol technique for the purification of small quantities of tobacco mosaic virus. Microbios, 25(99): 33-43. https://pubmed.ncbi.nlm.nih.gov/393959/
BIRIS-DORHOI, E.S., D. MICHIU, C.R. POP, A.M. ROTAR, M. TOFANA, O.L. POP, S.A. SOCACI and A.C. FARCAS, 2020. Macroalgae-A sustainable source of chemical compounds with biological activities. Nutrients, 12(10): 3085. DOI: http://doi.org/10.3390/nu12103085
CHO, M., H. S. LEE, I. J. KANG, M. H. WON and S. YOU, 2011. Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chemistry, 127(3): 999-1006. DOI: http://doi.org/10.1016/j.foodchem.2011.01.072
CLARK, M. F. and A. N. ADAMS, 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34(3): 475–483. DOI: http://doi.org/10.1099/0022-1317-34-3-475
CONVERSE, R. H., and R. R. MARTIN, 1990. ELISA methods for plant viruses. R., Ball, E. and Deboer, S. (Eds). Serological methods for detection and identification of viral and bacterial plant pathogens. Hampton Academic Press. Pp: 179-196.
COX, S., N. ABU-GHANNAM and S. GUPTA, 2010. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. International Food Research Journal, 17: 205-220. DOI: http://doi.org/10.21427/D7HC92
DAMIRDAGH, I. S., and R.J. SHEPHARED, 1970. Purification of the Tobacco etch and other viruses of Potato Y group. Phytopathology, 60: 32-142. DOI: http://doi.org/10.1094/Phyto-60-132
EL-GAMAL, A. A, 2010. Biological importance of marine algae. Saudi Pharmaceutical Journal, 18(1): 1-25. DOI: http://doi.org/10.1016/j.jsps.2009.12.001
EL-SAWY, M. M., M. M. ELSHARKAWY, J. MOHAMED ABASS and M. H. KASEM, 2017. Antiviral activity of 2-Nitromethyl Phenol, Zinc Nanoparticles and Seaweed extract against Cucumber mosaic virus (CMV) in Eggplant. Journal of Virology and Antiviral Research, 6(2): 90663694. DOI: http://doi.org/10.4172/2324-8955.1000173
ELIWII AL-DULAMI, A.K. and M.A.W. AL-FAHD, 2023. Bio-Mass Production of Spirulina platensis and Its use in Inducing Hostility Resistance Against Potyvirus Potato virus y. Fifth International Conference for Agricultural and Environment Sciences, 1158. DOI: http://doi.org/10.1088/1755-1315/1158/7/072018
GOLOTIN, V. A., A. P. FILSHTEIN, I. V. CHIKALOVETS, N. Y. KIM, V. I. MOLCHANOVA and O. V. CHERNIKOV, 2019. Expression and purification of a new lectin from mussel Mytilus trossulus. Protein Expression and Purification, 154: 62-65.
DOI: http://doi.org/10.1016/j.pep.2018.10.003
HAMED, S.M., A.A.A. EL-RHMAN, N. ABDEL-RAOUF and I.B.M. IBRAHEEM, 2018. Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef University Journal of Basic and Applied Sciences, 7(1): 104-110. DOI: http://doi.org/10.1016/j.bjbas.2017.08.002
HENTATI, F., L. TOUNSI, D. DJOMDI, G. PIERRE, C. DELATTRE, A.V. URSU, I. FENDRI, S. ABDELKAFI and P. MICHAUD, 2020. Bioactive polysaccharides from seaweeds. Molecules, 25(14): 3152. DOI: http://doi.org/10.3390/molecules25143152
HUANG, C. Y., S. J. WU, W. N. YANG, A. W. KUAN and C. Y. CHEN, 2016. Antioxidant activities of crude extracts of fucoidan extracted from Sargassum glaucescens by a compressional-puffing-hydrothermal extraction process. Food Chemistry, 197: 1121-9. DOI: http://doi.org/10.1016/j.foodchem.2015.11.100
HULL, R, 2002. Matthews' plant virology. Academic Press, San Diego, California
JIAO, G., G. YU, J. ZHANG and H. S. EWART, 2011. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs, 9(2): 196–223. DOI: http://doi.org/10.3390/md9020196
MARTINS, B., M. VIEIRA, C. DELERUE-MATOS, C. GROSSO and C. SOARES, 2022. Biological potential, gastrointestinal digestion, absorption, and bioavailability of algae-derived compounds with neuroprotective activity: A comprehensive review. Marine Drugs, 20(6): 362. DOI: http://doi.org/10.3390/md20060362
MIERZIAK, J., K. KOSTYN and A. KULA, 2014. Flavonoids as important molecules of plant interaction with the environment. Molecules, 19: 16240-16265. https://doi.org/10.3390/molecules191016240
MOHAMED, S., S. N. HASHIM and H. A. RAHMAN, 2012. Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends in Food Science and Technology, 23(2): 83–96. DOI: http://doi.org/10.1016/j.tifs.2011.09.001
MORYA, V. K., J. KIM and E. K. KIM, 2012. Algal fucoidan: structural and size dependent bioactivities and their perspectives. Applied Microbiology and Biotechnology, 93: 71–82. DOI: http://doi.org/10.1007/s00253-011-3666-8
NAGORSKAIA, V. P., A. V. REUNOV, L. A. LAPSHINA, I. M. ERMAK and A. O. BARABANOVA, 2008. Influence of kappa/beta-carrageenan from red alga Tichocarpus crinitus on development of local infection induced by tobacco mosaic virus in Xanthi-nc tobacco leaves. Izvestiia Akademii nauk. Seriia Biologicheskaia, 35(3): 360-364. https://pubmed.ncbi.nlm.nih.gov/ 18668717. DOI: http://doi.org/10.1090/0022
OBIED, H. K., M. S. ALLEN, D. R. BEDGOOD, P. D. PRENZLER and K. ROBARDS, 2005. Investigation of Australian olive mill waste for recovery of biophenols. Journal of Agricultural and Food Chemistry, 53(26): 9911-9920.
DOI: http://doi.org/10.1021/jf0518352
PAPAGEORGIOU, G. and C. GOVINDJEE, 2005. Chlorophyll a fluorescence, asignature of photosynthesis. Advances in Photosynthesis and Respiration, 19: 100-105. Doi: http://doi.org/10.1007/978-1-4020-3218-9
PARDEE, K. L., P. ELLIS, M. BOUTHILLIER, G. H. N. TOWERS and C. J. FRENCH, 2004. Plant virus inhibitors from marine algae. Canadian Journal of Botany, 82(3): 304–309. DOI: http://doi.org/10.1139/b04-002
PENG, Y., J. LEI, L. HUANG and J. YU, 2004. Effects of Potato Virus Y infection on chloroplast ultrastructure, photosynthesis and chlorophyll fluorescence quenching in potato leaves (abstract). Acta Phytopathologica Sinica, 34(1): 32-36.
DOI: http://doi.org/10.1000/0022-1317-34-3-475
POONAM, S, 2015. The seaweed Caulerpa taxifolia was tested for activity against tobacco necrotic virus (TNV). International Journal of Virology and Molecular Biology, 4(1): 1-3. DOI: http://doi.org/10.5923/j.ijvmb.20150401.01
PULZ, O. and W. GROSS, 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65: 635–648. DOI: http://doi.org/10.1007/s00253-004-1647-x
REYNOLDS, R. J, 2011. Potato virus Y (PVY) in Burly tobacco. Phytopathology, 103: 81-84. DOI: http://doi.org/10.1091/0002-1317-34-3-475
RYSLAVA, H., K. MULLER, S. SEMORADOVA, H. SYNKOVA and N, CEROVSKA, 2003. Photosynthesis and activity of phosphoenolpyruvate carboxylase in Nicotiana tabacum L. leaves infected by Potato Virus A and Potato Virus Y. Photosynthetica, 41(3): 357-363. DOI: http://doi.org/10.1023/B:PHOT.0000015459.22769.bf
SHAZDEHAHMADI, M. and M. R. SALAVATI MEYBODI, 2016. Evaluation of relative resistance of tobacco to potato virus Y using microsatellite markers (SSR). Agricultural Biotechnology, 6(2): 97-106. DOI: http://doi.org/0.1090/0022-1317-34-3-475
STADNIK, M.J., and M.B. DE FREITAS, 2014. Algal polysaccharides as source of plant resistance inducers. Tropical Plant Pathology, 39: 111-118. DOI: http://doi.org/10.1590/S1982-56762014000200001
SUDIRMAN, S., Y.H. HSU, J.L. HE and Z.L. KONG, 2018. Dietary polysaccharide-rich extract from Eucheuma cottonii modulates the inflammatory response and suppresses colonic injury on dextran sulfate sodium-induced colitis in mice. Plos One, 13(10): 205-252. DOI: http://doi.org/10.1371/journal.pone.0205252
VERMA, H. N., V. K. BARANWAL and S, SRIVASTAVA, 1998. Antiviral substances of plant origin. In plant virus disease control, A. R. K. Hadidi, Khetarpal and H. Koganezawa (Fds.) APS. Press. St. Paul. Minnesota, 154-162.
VERRIER, J. L., V. MARCHAND, B. CAILLETEAU and R. DELON, 2001. Chemical change and cigarette smoke mutagenicity increase associated with CMV and PVY infection in burley tobacco. Coresta meet. Agro Phyto groups. Cape Town, South Africa, 1-12. DOI: http://doi.org/10.1009/0022-1317-34-3-475
WAZIRI, H. M. A, 2015. Plants as antiviral agents. Journal of Plant Pathology and Microbiology, 6(2): 288-301. doi: http://doi.org/10.4172/2157-7471.1000254
ZAID, S. A. A., K. S. D. ABDEL-WAHAB, N. N. ABED, E. K. ABO ELMAGD and R. A. SALAHELDIN, 2016. Screening for antiviral activities of aqueous extracts of some Egyptian seaweeds. The Egyptian Journal of Hospital Medicine, 64: 430–435.
DOI: http://doi.org/10.12816/0029035
ZHAO, L., X.A. HAO and YF. WU, 2015. Inhibitory effect of polysaccharide peptide (PSP) against tobacco mosaic virus (TMV). International Journal of Biological Macromolecules, 75: 474-478. DOI: http://doi.org/10.1016/j.ijbiomac.2015.01.058
ZHAO, L., C. H. FENG, K. WU, W. CHEN, Y. CHEN, X. HAO and Y. WU, 2016. Advances and prospects in biogenic substances against plant virus: a review. Pesticide Biochemistry and Physiology, 135: 15-26. DOI: http://doi.org/10.1016/j.pestbp.2016.07.003