- دلقندی، م.، اندرزیان، ب.، برومندنسب، س.، مساح بوانی، ع. و جواهری، ا. 1393. ارزیابی مدل CERES-Wheat نسخه DSSAT 4.5 در شبیهسازی رشد، عملکرد مراحل فنولوژی گندم در شرایط مدیریتهای مختلف تخصیص آب در مزرعه: مطالعه موردی: شهرستان اهواز. نشریه آب و خاک (علوم و صنایع کشاورزی)، 28 (1): 82-91.
- دواتگر، ن. 1389. پیشبینی عملکرد گیاه برنج در شرایط محدودیت آب با استفاده از مدلهای شبیهسازی رشد و نمو گیاه در مقیاس ناحیهای. پایاننامه دکتری خاکشناسی دانشکده کشاورزی. دانشگاه تبریز.
- رضایی، م. 1387. گزارش نهایی طـرح بررسـی اثـر آبیـاری تنـاوبی و مقادیر مختلف کود نیتروژن بر عملکرد برنج رقم محلی هاشـمی. انتشارات موسسه تحقیقات برنج کشور، رشت.
- رضایی، م. 1391. بررسی برهمکنش سطوح مختلف زئولیت و آبیاری تناوبی بر عملکرد و اجزای عملکرد برنج. گزارش نهایی پروژه تحقیقاتی. موسسه تحقیقات برنج کشور، رشت.
- رضایی، م. و نحوی، م. 1382. اثر دور آبیـاری بـر مقـدار مصـرف آب و عملکرد برنج در گـیلان. مجموعـه مقـالات یـازدهمین همـایش کمیته ملی آبیاری و زهکشی ایران. 83، 233-240.
- Amiri, E., Rezaei, M., Bannayan, M. and Soufizadeh, S. 2013. Calibration and evaluation of CERES rice model under different nitrogen-and water-management options in semi-mediterranean climate condition. Communications in soil science and plant analysis, 44(12): 1814-1830.
- Amiri, E., Rezaei, M., Rezaei, E.E. and Bannayan, M. 2014. Evaluation of Ceres-Rice, Aquacrop and Oryza2000 models in simulation of rice yield response to different irrigation and nitrogen management strategies. Journal of Plant Nutrition, 37(11): 1749-1769.
- Bouman, B.A.M., Van Keulen, H., Van Laar, H.H. and Rabbinge, R. 1996. The ‘School of de Wit’crop growth simulation models: a pedigree and historical overview. Agricultural systems, 52(2-3): 171-198.
- De Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., Supit, I., van der Wijngaart, R. and van Diepen, K. 2019. 25 years of the WOFOST cropping systems model. Agricultural systems, 168: 154-167.
- Dettori, M., Cesaraccio, C., Motroni, A., Spano, D. and Duce, P. 2011. Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy. Field crops research, 120 (1): 179-188.
- Dhillon, M.S., Dahms, T., Kuebert-Flock, C., Rummler, T., Arnault, J., Steffan-Dewenter, I. and Ullmann, T. 2023. Integrating random forest and crop modeling improves the crop yield prediction of winter wheat and oil seed rape. Frontiers in Remote Sensing, 3, 1010978.
- Faivre, R., Leenhardt, D., Voltz, M., Benoit, M., Papy, F., Dedieu, G. and Wallach, D. 2009. Spatializing crop models. In: Lichtfouse, E., et al. (Eds.), Sustainable Agriculture. Springer, Berlin, Germany, 686–705.
- Fry, J., Guber, A.K., Ladoni, M., Munoz, J.D. and Kravchenko, A.N. 2017. The effect of up-scaling soil properties and model parameters on predictive accuracy of DSSAT crop simulation model under variable weather conditions. Geoderma, 287: 105-115.
- Ge, J., Yu, Z., Gong, X., Ping, Y., Luo, J. and Li, Y. 2023. Evaluation of Irrigation Modes for Greenhouse Drip Irrigation Tomatoes Based on AquaCrop and DSSAT Models. Plants, 12(22): 3863.
- He, Y., Hou, L., Wang, H., Hu, K. and McConkey, B. 2014. A modelling approach to evaluate the long-term effect of soil texture on spring wheat productivity under a rain-fed condition. Scientific reports, 4(1): 5736.
- Huang, J., Sedano, F., Huang, Y., Ma, H., Li, X., Liang, S., Tian, L., Zhang, X., Fan, J. and Wu, W. 2016. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agricultural and Forest Meteorology, 216: 188-202.
- Jamieson, P.D., Porter, J.R., Goudriaan, J., Ritchie, J.V., Van Keulen, H. and Stol, W. 1998. A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crops Research, 55(1-2): 23-44.
- Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J. and Ritchie, J.T. 2003. The DSSAT cropping system model. European journal of agronomy, 18(3-4): 235-265.
- Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N., Meinke, H., Hochman, Z. and McLean, G. 2003. An overview of APSIM, a model designed for farming systems simulation. European journal of agronomy, 18(3-4), 267-288.
- Khan, A., Stöckle, C.O., Nelson, R.L., Peters, T., Adam, J.C., Lamb, B., Chi, J. and Waldo, S. 2019. Estimating biomass and yield using metric evapotranspiration and simple growth algorithms. Agronomy journal, 111(2), 536-544.
- Kosamkar, P.K. and Kulkarni, D.V. 2019. Agriculture crop simulation models using computational intelligence. International Journal of Computer Engineering and Technology, 10(3).
- Negm, L.M., Youssef, M.A., Skaggs, R.W., Chescheir, G.M. and Kladivko, E.J. 2014. DRAINMOD-DSSAT simulation of the hydrology, nitrogen dynamics, and plant growth of a drained corn field in Indiana. Journal of Irrigation and Drainage Engineering, 140(8), 04014026.
- Ojeda, J.J., Rezaei, E.E., Remenyi, T.A., Webber, H.A., Siebert, S., Meinke, H., Webb, M.A., Kamali, B., Harris, R.M., Kidd, D.B. and Mohammed, C.L. 2021. Implications of data aggregation method on crop model outputs–The case of irrigated potato systems in Tasmania, Australia. European Journal of Agronomy, 126, 126276.
- Ovando, G., Sayago, S. and Bocco, M. 2018. Evaluating accuracy of DSSAT model for soybean yield estimation using satellite weather data. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 208-217.
- Palosuo, T., Kersebaum, K.C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J.E,Patil, R.H., Ruget, F., Rumbaur, C. and Taka C,J. 2011. Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. European Journal of Agronomy. 35, 103–114.
- Refsgaard, J. C., Van der Sluijs, J. P., Brown, J. and Van der Keur, P. 2006. A framework for dealing with uncertainty due to model structure error. Advances in water resources, 29(11), 1586-1597.
- Reynolds, M., Kropff, M., Crossa, J., Koo, J., Kruseman, G., Molero Milan, A., Rutkoski, J., Schulthess, U., Sonder, K., Tonnang, H. and Vadez, V. 2018. Role of modelling in international crop research: overview and some case studies. Agronomy, 8(12), 291.
- Salamon, P., and Feyen, L. 2009. Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter. Journal of Hydrology, 376 (3-4), 428-442.
- Salmerón, M., Cavero, J., Isla, R., Porter, C.H., Jones, J.W. and Boote, K.J. 2014. DSSAT nitrogen cycle simulation of cover crop–maize rotations under irrigated Mediterranean conditions. Agronomy Journal, 106(4), 1283-1296.
- Satir, O. and Berberoglu, S. 2016. Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crop Research, 192, 134–143.
- Steduto, P., Hsiao, T.C., Raes, D. and Fereres, E. 2009. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101(3), 426-437.
- Stöckle, C.O., Donatelli, M. and Nelson, R. 2003. CropSyst, a cropping systems simulation model. European journal of agronomy, 18(3-4), 289-307.
- Thorp, K.R., Batchelor, W.D., Paz, J.O., Kaleita, A.L. and DeJonge, K.C. 2007. Using cross-validation to evaluate CERES-Maize yield simulations within a decision support system for precision agriculture. Transactions of the ASABE, 50(4), 1467-1479.
- Van Genuchten, M.T. 1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44 (5), 892-898.
- Van Ittersum, M. K., Leffelaar, P. A., Van Keulen, H., Kropff, M. J., Bastiaans, L., & Goudriaan, J. 2003. On approaches and applications of the Wageningen crop models. European journal of agronomy, 18(3-4), 201-234.
- Woli, P., Rouquette Jr, F. M., & Long, C. R. 2019. Investigating DSSAT: Bermudagrass response to nitrogen as influenced by soil and climate. Agronomy Journal, 111(4), 1741-1751.
- Yang, J.M., Yang, J.Y., Dou, S., Yang, X.M., Hoogenboom, G. 2013. Simulating the effect of long-term fertilization on maize yield and soil C/N dynamics in northeastern China using DSSAT and CENTURY-based soil model. Nutr. Cycl. Agroecosyst. 95, 287–303.
- Zhang, Q., Shi, L., Holzman, M., Ye, M., Wang, Y., Carmona, F. and Zha, Y. 2019. A dynamic data-driven method for dealing with model structural error in soil moisture data assimilation. Advances in Water Resources, 132, 103407.
|