Aalami M, Ardestani M, Malekmohammadi B. 2024. Flood potential modeling in Zarineh Rood watershed using artificial intelligence models. Watershed Management Research. 37(1): 2-17. (In Persian). DOI: 10.22092/WMRJ.2023.360973.1513
Abedi R, Costache R, Shafizadeh-Moghadam H, Pham QB. 2022. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto International. 37(19): 5479-5496. DOI: 10.1080/10106049.2021.1920636
Arabameri A, Saha S, Mukherjee K, Blaschke T, Chen W, Ngo PTT, Band SS. 2020. Modeling spatial flood using novel ensemble artificial intelligence approaches in northern Iran. Remote Sensing. 12(20): p.3423. DOI: 10.3390/rs12203423
Arabameri A, Seyed Danesh A, Santosh M, Cerda A, Chandra Pal S, Ghorbanzadeh O, Chowdhuri I. 2022. Flood susceptibility mapping using meta-heuristic algorithms. Geomatics, Natural Hazards and Risk. 13(1): 949-974.DOI: 10.1080/19475705.2022.2060138
Barati GR, Bodagh Jamali J, Maleki N. 2012. Anticyclones and Heavy Rainfalls over Western Iran. Physical Geography Research. 44(2): 85-98. (In Persian). DOI: 10.22059/jphgr.2012.29208
Berrar, D. 2025. Bayes’ Theorem and Naive Bayes Classifier. Encyclopedia of Bioinformatics and Computational Biology (Second Edition). pp. 483-494. DOI: 10.1016/B978-0-323-95502-7.00118-4
Chan JYL, Leow SMH, Bea KT, Cheng WK, Phoong SW, Hong ZW, Chen YL. 2022. Mitigating the multicollinearity problem and its machine learning approach: A review. Mathematics. p.1283. DOI:10.3390/math10081283
Chowdhury ME, Islam AS, Zzaman RU, Khadem S. 2025. A machine learning-based approach for flash flood susceptibility mapping considering rainfall extremes in the northeast region of Bangladesh. Advances in Space Research. 75(2):1990-2017. DOI: 10.1016/j.asr.2024.10.047
Chen J, Huang G, Chen W. 2021. Towards better flood risk management: Assessing flood risk and investigating the potential mechanism based on machine learning models. Journal of Environmental Management. p.112810. DOI: 10.1016/j.jenvman.2021.112810
Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, Wang X, Bian H, Zhang S, Pradhan B, Ahmad BB. 2020. Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Science of the Total Environment. p.134979. DOI: 10.1016/j.scitotenv.2019.134979
Choubin B, Hosseini FS, Rahmati O, Youshanloei MM. 2023. A step toward considering the return period in flood spatial modeling. Natural Hazards. 115(1): 431-460. DOI: 10.1007/s11069-022-05561-y
Choubin B, Sajedi Hosseini F, Rahmati O. 2025. Spatial Analysis of Vulnerability in Zarrinehrood Watershed to Flood Occurrence. Iranian Journal of Watershed Management Science 18(67): 73-86. (In Persian). DOI: 10.22034/18.67.6
Dutta P, Deka S. 2024. A novel approach to flood risk assessment: Synergizing with geospatial based MCDM-AHP model, multicollinearity, and sensitivity analysis in the Lower Brahmaputra Floodplain, Assam. Journal of Cleaner Production. p.142985. DOI: 10.1016/j.jclepro.2024.142985
Frattini P, Crosta G, Carrara A. 2010. Techniques for evaluating the performance of landslide susceptibility models. Engineering geology. 111(1-4): 62-72. DOI: 10.1016/j.enggeo.2009.12.004
Habibi A, Delavar MR, Sadeghian MS, Nazari B. 2023. Flood Susceptibility Mapping and Assessment Using Regularized Random Forest and NAÏVE Bayes Algorithms. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 10: 241-248. DOI: 10.5194/isprs-Annals-X-4-W1-2022-241-2023
Hosseini SA, Ahmadi H, Houshyar M. 2021. Analysis of Rainfall System, Leading to Floods in July 2015 in Saghez City in Kurdistan Province. Integrated Watershed Management, 1(1): 45-62. (In Persian). DOI: 10.22034/iwm.2021.247942
Khajehnejad R, Bahremand A, Mohammadrezaei M. 2024. An overview of integrated flood management in Iran: current status and challenge. Journal of Aquifer and Qanat. 5(1): 183-202. (In Persian). DOI: 10.22077/jaaq.2024.8149.1077
Maswadi K, Ghani NA, Hamid S, Rasheed MB, 2021. Human activity classification using Decision Tree and Naïve Bayes classifiers. Multimedia Tools and Applications. 80: 21709-21726. DOI: 10.1007/s11042-020-10447-x
Moazzam MFU, Lee BG, Rahman AU, Farid N, Rahman G. 2020. Spatio-statistical analysis of flood susceptibility assessment using bivariate model in the floodplain of river swat, district charsadda, Pakistan. Journal of Geoscience and Environment Protection. 8(05): 159. DOI: 10.4236/gep.2020.85010
Pajila PB, Sheena BG, Gayathri A, Aswini J, Nalini M. 2023, September. A comprehensive survey on naive bayes algorithm: Advantages, limitations and applications. In 2023 4th International Conference on Smart Electronics and Communication (ICOSEC). pp. 1228-1234. DOI: 10.1109/ICOSEC58147.2023.10276274
Pal S, Singha P. 2022. Analyzing sensitivity of flood susceptible model in a flood plain river basin. Geocarto International. 37(24):7186-7219. DOI: 10.1080/10106049.2021.1967464
Pham BT, Phong TV, Nguyen HD, Qi C, Al-Ansari N, Amini A, Ho LS, Tuyen TT, Yen HPH, Ly HB, Prakash I. 2020. A comparative study of kernel logistic regression, radial basis function classifier, multinomial naïve bayes, and logistic model tree for flash flood susceptibility mapping. Water. p.239. DOI: 10.3390/w12010239
Qi W, Ma C, Xu H, Chen Z, Zhao K, Han H, 2021. A review on applications of urban flood models in flood mitigation strategies. Natural Hazards. 108: 31-62. DOI: 10.1007/s11069-021-04715-8
Rahmati O, Darabi H, Panahi M, Kalantari Z, Naghibi SA, Ferreira CSS, Kornejady A, Karimidastenaei Z, Mohammadi F, Stefanidis S, Tien Bui D. 2020. Development of novel hybridized models for urban flood susceptibility mapping. Scientific Reports. p.12937. DOI: 10.1038/s41598-020-69703-7
Rahmati O, Kornejady A, Choubin B, Jaafari A, Amini A. 2024. Evaluating the performance of the flexible discriminant analysis model in predicting the flooding potential of the Zarrineh-Rood Watershed. Water and Soil Management and Modelling. 4(3): 269-284. DOI: 10.22098/mmws.2023.13102.1303
Rahmati O, Kornejady A, Samadi M, Deo RC, Conoscenti C, Lombardo L, Dayal K, Taghizadeh-Mehrjardi R, Pourghasemi HR, Kumar S, Bui DT. 2019. PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches. Science of the Total Environment. 664: 296-311. DOI: 10.1016/j.scitotenv.2019.02.017
Rajabizadeh Y, Ayyoubzadeh SA, Zahiri A. 2019. Flood Survey of Golestan Province in 2018-2019 and Providing Solutions for Its Control and Management in the Future. Journal of Ecohydrology. 6(4): 921-942. (In Persian). DOI: 10.22059/ije.2019.283004.1137
Samanta S, Pal DK, Palsamanta B. 2018. Flood susceptibility analysis through remote sensing, GIS and frequency ratio model. Applied Water Science. p. 66. DOI: 10.1007/s13201-018-0710-1
Seleem O, Ayzel G, de Souza ACT, Bronstert A, Heistermann M. 2022. Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany. Geomatics, Natural Hazards and Risk. 13(1): 1640-1662. DOI: 10.1080/19475705.2022.2097131
Siahkamari S, Haghizadeh A, Zeinivand H, Tahmasebipour N, Rahmati O. 2018. Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto International. 33(9): 927-941. DOI: 10.1080/10106049.2017.1316780
Sulaiman MS, Abood MM, Sinnakaudan SK, Shukor MR, You GQ, Chung XZ. 2021. Assessing and solving multicollinearity in sediment transport prediction models using principal component analysis. ISH Journal of Hydraulic Engineering. 27(sup1). pp. 343-353. DOI: 10.1080/09715010.2019.1653799
Tehrany MS, Kumar L. 2018. The application of a Dempster–Shafer-based evidential belief function in flood susceptibility mapping and comparison with frequency ratio and logistic regression methods. Environmental Earth Sciences. 77: 1-24. DOI: 10.1007/s12665-018-7667-0
Traoré K, Fowe T, Ouédraogo M, Zorom M, Bologo/Traoré M, Toé P, Karambiri H. 2024. Mapping urban flood susceptibility in Ouagadougou, Burkina Faso. Environmental Earth Sciences. p. 561. DOI: 10.1007/s12665-024-11871-0
Thapa PS, Chaudhary S, Dasgupta P. 2022. Contribution of integrated watershed management (IWM) to disaster risk reduction and community development: Lessons from Nepal. International Journal of Disaster Risk Reduction. p.103029. DOI: 10.1016/j.ijdrr.2022.103029
Wang H, Wang H, Wu Z, Zhou Y. 2021. Using multi-factor analysis to predict urban flood depth based on Naive Bayes. Water. 432. DOI: 10.3390/w13040432
Wickramasinghe I, Kalutarage H. 2021. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing. 25(3):2277-2293. DOI: 10.1007/s00500-020-05297-6
Widya LK, Rezaie F, Lee W, Lee CW, Nurwatik N, Lee S. 2024. Flood susceptibility mapping of Cheongju, South Korea based on the integration of environmental factors using various machine learning approaches. Journal of Environmental Management. p.121291. DOI: 10.1016/j.jenvman.2024.121291