| 
		
Ali, A., Martelli, R., Lupia, F. and Barbanti, L., 2019.Assessing multiple years’ spatial variability of crop yields using satellite vegetation indices. Remote Sensing, 11(20): 2384. DOI: 3390/rs11202384Anderson, D. and Burnham, K., 2004.Model selection and multi-model inference (2nd ed.). Springer-Verlag. DOI: 1007/b97636Avazpour, N., Faramarzi, M., Omidipour, R. and Mehdizadeh, H., 2021.Monitoring the drought effects on vegetation changes using satellite imagery (Case Study: Ilam Catchment). Geography and Environmental Sustainability, 11(4): 125-143. (In Persian). DOI: 22126/ges.2022.7130.2472 De Martonne, E., 1926.L'indice d'aridité. Bulletin de l'Association de Géographes Français, 3(9): 3–5. DOI: 3406/bagf.1926.6322Du, M., Li, M., Noguchi, N., Ji, J. and Ye, M., 2023.Retrieval of fractional vegetation cover from remote sensing image of unmanned aerial vehicle based on mixed pixel decomposition method. Drones, 7(1): 43. DOI: 3390/drones7010043Faramarzi, M., Kesting, S., Isselstein, J. and Wrage, N., 2010.Rangeland condition in relation to environmental variables, grazing intensity and livestock owners’ perceptions in semi-arid rangeland in western Iran. The Rangeland Journal, 32(4): 367-377. DOI: 1071/RJ09022Gao, L., Wang, X., Johnson, B. A., Tian, Q., Wang, Y., Verrelst, J. and Gu, X., 2020.Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 159: 364-377. DOI: 1016/j.isprsjprs.2019.11.018 Grace, J.B. and Bollen, K.A., 2005.Interpreting the results from multiple regression and structural equation models. Bulletin of the Ecological Society of America, 86(4): 283-295. DOI: 1890/0012-9623(2005)86[283:ITRFMR]2.0.CO;2 Helldén, U. and Tottrup, C., 2008.Regional desertification: A global synthesis. Global and Planetary Change, 64(3-4): 169-176. DOI: 1016/j.gloplacha.2008.10.006Huete, A. R., 1988.A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295-309. DOI: 1016/0034-4257(88)90106-X Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X. and Ferreira, L. G., 2002.Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2): 195-213. DOI: 1016/S0034-4257(02)00096-2Imani, J., Ebrahimi, A., Gholonejad, B. and Tahmasebi, P., 2018. Comparison of NDVI and SAVI in three plant communities with different sampling intensity (Case Study: Choghakhour Lake Rangelands in Charmahal & Bakhtiri). Iranian Journal of Range and Desert Research, 25(1): 152-169. DOI: 10.22092/ijrdr.2018.116233Jiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G. and Zhang, X., 2006.Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 101(3): 366-378. DOI: 1016/j.rse.2006.01.003 Kabolizadeh, M., Rangzan, K. and Mohammadi, SH., 2018.Application of fusion in satellite images the Landsat-8 and Sentinel-2 in environmental monitoring. Journal of RS and GIS for Natural Resources, 9(3(32)): 53-71. (In Persian). SID. https://sid.ir/paper/189501/enKigel, J., Konsens, I., Segev, U. and Sternberg, M., 2021.Temporal stability of biomass in annual plant communities is driven by species diversity and asynchrony, but not dominance. Journal of Vegetation Science, 32(2): 13012. DOI: 1111/jvs.13012Li, Y., Li, M., Li, C. and Liu, Z., 2020.Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Scientific Reports, 10(1): 9952. DOI: 10.1038/s41598-020-67024-3Liu, B., Zhao, W., Liu, Z., Yang, Y., Luo, W., Zhou, H. and Zhang, Y., 2015.Changes in species diversity, aboveground biomass, and vegetation cover along an afforestation successional gradient in a semiarid desert steppe of China. Ecological Engineering, 81: 301-311. DOI: 10.1016/j.ecoleng.2015.04.014Lu, Q., Zhao, D., Wu, S., Dai, E. and Gao, J., 2019.Using the NDVI to analyze trends and stability of grassland vegetation cover in Inner Mongolia. Theoretical and Applied Climatology, 135: 1629-1640. DOI: 10.1007/s00704-018-2614-2Luz, L. R., Giongo, V., Santos, A. M. D., Lopes, R. J. D. C. and Júnior, C. D. L., 2021.Biomass and vegetation index by remote sensing in different caatinga forest areas. Ciência Rural, 52: e20201104. DOI: 1590/0103-8478cr20201104 Mashala, M. J., Dube, T., Mudereri, B. T., Ayisi, K. K. and Ramudzuli, M. R., 2023.A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sensing, 15(16): 3926. DOI: 3390/rs15163926Mu, X., Song, W., Gao, Z., McVicar, T. R., Donohue, R. J. and Yan, G., 2018.Fractional vegetation cover estimation by using multi-angle vegetation index. Remote Sensing of Environment, 216: 44-56. DOI:1016/J.RSE.2018.06.022Omidipour, R., Ebrahimi, A., Tahmasebi, P. and Faramarzi, M., 2020. Grazing effects on the relationship between vegetation canopy cover and above-ground phytomass with vegetation indices in Sabzekouh region, Chaharmhal va Bakhtiari. Journal of Range and Watershed Managment, 73(1): 33-47. DOI: 10.22059/jrwm.2020.272219.1336Omidipour, R., Tahmasebi, P., Faizabadi, M. F., Faramarzi, M. and Ebrahimi, A. (2021).Does β diversity predict ecosystem productivity better than species diversity? Ecological Indicators, 122: 107212. DOI: 1016/j.ecolind.2020.107212Peng, J., Liu, Z., Liu, Y., Wu, J. and Han, Y., 2012.Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecological Indicators, 14(1): 28-39. DOI: 1016/j.ecolind.2011.08.011Pringle, M. J., Denham, R. J. and Devadas, R., 2012.Identification of cropping activity in central and southern Queensland, Australia, with the aid of MODIS MOD13Q1 imagery. International Journal of Applied Earth Observation and Geoinformation, 19: 276-285. DOI: 1016/j.jag.2012.05.015Purevdorj, T. and Tateishi, R., 1998.Vegetation cover estimate of arid and semi-arid regions by NOAA AVHRR data. Journal of the Japan Society of Photogrammetry and Remote Sensing, 37(1): 18-28. DOI: 4287/jsprs.37.18Rapiya, M., Ramoelo, A. and Truter, W., 2023.Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data. Environmental Monitoring and Assessment, 195(12): 1544. DOI: 1007/s10661-023-12133-5Riquelme, L., Duncan, D. H., Rumpff, L. and Vesk, P. A., 2022.Using remote sensing to estimate understorey biomass in semi-arid woodlands of South-Eastern Australia. Remote Sensing, 14(10): 2358. DOI: 3390/rs14102358Riquelme, L., Rumpff, L., Duncan, D. H. and Vesk, P. A., 2024.Comparing grass biomass estimation methods for management decisions in a semi‐arid landscape. Applied Vegetation Science, 27(3): e12792. DOI: 1111/avsc.12792Schucknecht, A., Meroni, M., Kayitakire, F. and Boureima, A., 2017.Phenology-based biomass estimation to support rangeland management in semi-arid environments. Remote Sensing, 9(5): 463. DOI: 3390/rs9050463Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S. and Wang, Y., 2015.Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sensing of Environment, 163: 326-340. DOI: 1016/j.rse.2015.03.031Xie, Y., Sha, Z., Yu, M., Bai, Y. and Zhang, L, 2009.A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecological Modelling, 220(15): 1810-1818. DOI: 1016/j.ecolmodel.2009.04.025Xue, J. and Su, B., 2017.Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017(1): 1353691. DOI: 1155/2017/1353691Zolfaghari, F., Azarnivand, H., Khosravi, H., Zehtabian, G. and Khalighi Sigaroodi, S., 2019. The Effect of Vegetation Cover on Microclimate in Dry land Ecosystem (Case Study: Sistan Plain). Journal of Range and Watershed Managment, 71(4): 901-914. doi: 10.22059/jrwm.2018.234109.1130     |