Abraham EP, Chain E, Fletcher CM, Gardner AD, Heatley NG, Jennings MA, Florey, HW. 1941. Further observations on penicillin. The Lancet. 238 (6155): 177-189. https://doi.org/10.1016/S0140-6736(00) 72122-2.
Aljeldah MM, El-Sayyad H, Elhadi N, Rabaan AA. 2019. Effect of Gamma-Rays on the Growth and Penicillin Production of Penicillium chrysogenum. Journal of Pure & Applied Microbiology. 13(2): 779-788. https://dx.doi.org/10.22207/JPAM.13.2.13.
Amadi LO. 2020. A review of antimicrobial properties of alum and sundry applications. Acta Scientific Microbiology. 3(4): 109-117. https://dx.doi.org/ 10.31080/ ASMI.2020.03.0553.
Clutterbuck PW, Lovell R, Raistrick H. 1932. Studies in the biochemistry of micro-organisms: The formation from glucose by members of the Penicillium chrysogenum series of a pigment, an alkali-soluble protein and penicillin-the antibacterial substance of Fleming. Biochemical Journal. 26(6): 1907. https://dx.doi.org/10.1042/ bj0261907.
Cuero R, Smith J, Lacey J. 1986. The influence of gamma irradiation and sodium hypochlorite sterilization on maize seed microflora and germination. Food Microbiology. 3(2): 107-113. https://doi.org/10.1016/ S0740-0020(86)80034-X.
Davey V, Johnson MJ. 1953. Penicillin production in corn steep media with continuous carbohydrate addition. Applied Microbiology. 1(4): 208-211. https://doi.org/ 10.1128/am.1.4.208-211.1953.
Dharmarha V, Guron G, Boyer RR, Niemira BA, Pruden A, Strawn LK, Ponder MA. 2019. Gamma irradiation influences the survival and regrowth of antibiotic-resistant bacteria and antibiotic-resistance genes on romaine lettuce. Frontiers in Microbiology. 10: 710. https://doi.org/10.3389/fmicb.2019.00710.
Douma RD, Batista JM, Touw KM, Kiel JA, Krikken AM, et al. 2011. Degeneration of penicillin production in ethanol-limited chemostat cultivations of Penicillium chrysogenum: A systems biology approach. BMC Systems Biology. 5: 1-16. https://doi.org/10.1186/1752-0509-5-132.
El-Sayed ER. 2021. Discovery of the anticancer drug vinblastine from the endophytic Alternaria alternata and yield improvement by gamma irradiation mutagenesis. Journal of Applied Microbiology. 131(6): 2886-2898. https://doi.org/10.1111/jam.15169.
Fatima S, Rasool A, Sajjad N, Bhat EA, Hanafiah MM, Mahboob M. 2019. Analysis and evaluation of penicillin production by using soil fungi. Biocatalysis and Agricultural Biotechnology. 21: 101330. https://doi.org/10.1016/j.bcab.2019. 101330.
Fernandez-Canon JM, Reglero A, Martínezbianco H, Luengo JM. 1989. I. Uptake of phenylacetic acid by Penicillium chrysogenum Wis 54-1255: A critical regulatory point in benzylpenicillin biosynthesis. The Journal of Antibiotics. 42(9): 1398-1409. https://doi.org/10.7164/antibiotics.42.1398.
Fierro F, GarcíaEstrada C, Castillo N I, Rodríguez R, VelascoConde T, Martín JF. 2006. Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fungal Genetics and Biology. 43(9): 618-629. https://doi.org/10.1016/j.fgb.2006.03.001.
Fierro F, Vaca I, Castillo N I, García-Rico RO, Chávez R. 2022. Penicillium chrysogenum, a vintage model with a cutting-edge profile in biotechnology. Microorganisms. 10(3): 573. https://doi.org/10.3390/ microorganisms10030573.
Frisvad J. C, Smedsgaard J, Larsen T. O, Samson RA. 2004. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Studies in Mycology. 49(201): e41.
Grijseels S, Nielsen JC, Nielsen J, Larsen TO, Frisvad JC, Nielsen KF, Frandsen RJN, Workman M. 2017. Physiological characterization of secondary metabolite producing Penicillium cell factories. Fungal Biology and Biotechnology. 4: 1-12. https://doi.org/ 10.1186/s40694-017-0036-z.
Guzmán-Chávez F, Zwahlen RD, Bovenberg RA, Driessen AJ. 2018. Engineering of the filamentous fungus Penicillium chrysogenum as cell factory for natural products. Frontiers in Microbiology. 9: 2768. https://doi.org/10.3389/fmicb.2018.02768.
Hardianto D, Prabandari EE, Windriawati L, Marwanta E. 2015. Penicillin Production by Mutant of Penicillium chrysogenum. Jurnal Teknologi Lingkungan. 2(1): 15-19. https://doi.org/10.29122/JBBI.V2I1.530.
Havn Eriksen S, Jensen B, Schneider I, Kaasgaard S, Olsen J. 1994. Utilization of side-chain precursors for penicillin biosynthesis in a high-producing strain of Penicillium chrysogenum. Applied Microbiology and Biotechnology 40: 883-887. https://doi.org/10.1007/ BF00173993.
Ibrahim AA, El-Housseiny GS, Aboshanab KM, Startmann A, Yassien MA, Hassouna NA. 2023. Statistical optimization and gamma irradiation on cephalosporin C production by Acremonium chrysogenum W42-I. AMB Express. 13(1): 142. https://doi.org/10.1186/s13568-023-01645-5.
Jarque CM, Bera AK. 1987. A test for normality of observations and regression residuals. International Statistical Review/Revue Internationale de Statistique. 163-172. https://doi.org/10.2307/ 1403192.
Karunakar K, Veeragani N, Gundlapally J, Gummadi T. 2012. Comparative estimation of Penicillin production by wild and UV-irradiated mutant strains of Penicillium chrysogenum. HELIX. 1: 134-137.
Kumar A, Asthana M, Gupta A, Nigam D, Mahajan S. 2018. Secondary metabolism and antimicrobial metabolites of Penicillium. In: New and future developments in microbial biotechnology and bioengineering (Gupta VK and Rodriguez-Couto S, eds): 47-68. Elsevier. 10.1016/B978-0-444-63501-3.00003-X.
Levene H. 1960. Robust tests for equality of variances. Contributions to probability and statistics. 278-292.
Li X, Egervari G, Wang Y, Berger SL, Lu Z. 2018. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nature Reviews Molecular Cell Biology. 19(9): 563-578. https://doi.org/10.1038/s41580-018-0029-7.
Luckey TD. 1982. Physiological benefits from low levels of ionizing radiation. Health Physics. 43(6): 771-789. https://doi.org/10.1097/00004032-198212000-00001.
Macklis RM, Beresford B. 1991. Radiation hormesis. Journal of Nuclear Medicine. 32(2): 350-359.
Mesquita N, Portugal A, Piñar G, Loureiro J, Coutinho A, Trovão J, Nunes I, Botelho M, Freitas H. 2013. Flow cytometry as a tool to assess the effects of gamma radiation on the viability, growth and metabolic activity of fungal spores. International Biodeterioration and Biodegradation. 84: 250-257. https://doi.org/10.1016/j.ibiod.2012.05.008.
Nair R. 2007. Elucidation of the Mechanism of Elicitation in Penicillium Chrysogenum: Systematic Approach to Study the Effect of Oligosaccharides on Production of Penicillin G University of Westminster]. https://doi.org/10.1111/j.1365-2672.2009.04293.x.
Onyegeme-Okerenta B, Chinedu S, Okafor U, Okochi V. 2009. Antibacterial activity of culture extracts of Penicillium chrysogenum PCL501: effects of carbon sources. Online Journal of Health and Allied Sciences. 8(1): 9.
Onyegeme-Okerenta B, Okochi V, Chinedu S. 2013. Penicillin production by Penicillium chrysogenum PCL 501: effect of UV induced mutation. The Internet Journal of Microbiology. 12(1): 1-9.
Pienia̧żek N, Stȩpień P, Paszewski A. 1973. An Aspergillus nidulans mutant lacking cystathionine β-synthase: Identity of L-serine sulfhydrylase with cystathionine β-synthase and its distinctness from O-acetyl-L-seline sulfhydrylase. Biochimica et Biophysica Acta (BBA)-General Subjects. 297(1): 37-47. https://doi.org/10.1016/0304-4165(73) 9004 7-0.
Prasad KK, Prasad NK. 2010. Downstream process technology: a new horizon in biotechnology. PHI Learning Pvt. Ltd.
Sánchez S, Chávez A, Forero A, García-Huante Y, Romero A, … et al. 2010. Carbon source regulation of antibiotic production. The Journal of Antibiotics. 63(8): 442-459. https://doi.org/10.1038/ja.2010.78.
Stauffer J, Backus M. 1954. Spontaneous and induced variation in selected stocks of the Penicillium chrysogenum series. Annals of the New York Academy of Sciences. 60(1): 35-49. https://doi.org/10.1111/j.1749-6632.1954. tb39996.x.
Tan IKP, Ho CC. 1991. Growth and the production of penicillins in Penicillium chrysogenum with palm oil and its various fractions as carbon sources. Applied microbiology and biotechnology, 36(2), 163-166. https://doi.org/10.1007/BF00164413.
Veerapagu M, Jeya K, Ponmurugan K. 2008. Mutational effect of Penicillium chrysogenum on Antibiotic Production. Advanced Biotech. 16-19.
Weber SS, Polli F, Boer Rm, Bovenberg RA, Driessen AJ. 2012. Increased penicillin production in Penicillium chrysogenum production strains via balanced overexpression of isopenicillin N acyltransferase. Applied and environmental microbiology. 78(19): 7107-7113.https://doi.org/ 10.1128/AEM.01529-12.
Wu M, Crismaru CG, Salo O, Bovenberg RA, Driessen AJ. 2020. Impact of classical strain improvement of Penicillium rubens on amino acid metabolism during β-lactam production. Applied and Environmental Microbiology. 86(3): e01561-01519. https://doi.org/ 10.1128/AEM.01561-19
Zhgun AA. 2023. Industrial production of antibiotics in fungi: current state, deciphering the molecular basis of classical strain improvement and increasing the production of high-yielding strains by the addition of low-molecular weight inducers. Fermentation. 9(12): 1027. https://doi.org/10.3390/ fermentation 9121027.