-Ahmadi, H., Hemmasi, A. H., and Mahdavi, S., 2015. Investigation on mechanical properties of HDPE recycled composite filled by furfural residue produced from bagasse. Iranian Journal of Wood and Paper Science Research, 30(3): 376-387. In Persian, DOI: https://doi.org/10.22092/ijwpr.2015.13004
-Arjmandi, R., Hassan, A., Majeed, K., and Zakaria, Z., 2015. Rice husk filled polymer composites. International Journal of Polymer Science, (1): 501471. DOI: https://doi.org/10.1155 /2015/501471
-ASTM D638. 2010. Tensile properties of plastics, ASTM International, West Conshohocken, USA.
-ASTM D790. 2010. Flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, USA.
-ASTM D256. 2010. Determining the Izod pendulum impact resistance of plastics, ASTM International, West Conshohocken, USA.
-ASTM D2240. 2010. Rubber property-durometer (Shore) hardness, ASTM International, West Conshohocken, USA.
-ASTM D3641. 2012. Injection molding test specimens of thermoplastic molding and extrusion materials, ASTM International, West Conshohocken, USA.
-Bahlouli, S., Belaadi, A., Makhlouf, A., Alshahrani, H., Khan, M.K. and Jawaid, M., 2023. Effect of fiber loading on thermal properties of cellulosic washingtonia reinforced HDPE biocomposites. Polymers, 15(13): 2910. DOI: https://doi.org/10.3390/polym15132910
-Balla, V.K., Kate, K.H., Satyavolu, J., Singh, P. and Tadimeti, J.G.D., 2019. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 174: 106956. DOI: https://doi.org/ 10.1016/j.compositesb.2019.106956
-Brebu, M. 2020. Environmental degradation of plastic composites with natural fillers—a review. Polymers, 12(1): 166. DOI: https://doi.org /10.3390/polym12010166
-Durukan, S. N., Beylergil, B. and Dulgerbaki, C., 2023. Effects of silane‐modified nano‐CaCO3 particles on the mechanical properties of carbon fiber/epoxy (CF/EP) composites. Polymer Composites, 44(3): 1805-1821. DOI: https://doi.org/10.1002/pc. 27206
-Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M. and Garnier, C., 2023. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 19: 101271. DOI: https://doi.org/10.1016/j.rineng. 2023.101271
-He, H., Li, K., Wang, J., Sun, G., Li, Y. and Wang, J., 2011. Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Materials & Design, 32(8-9): 4521-4527. DOI: https://doi.org/ 10.1016/j.matdes. 2011.03.026
-Hossain, M.T., Shahid, M.A., Mahmud, N., Habib, A., Rana, M.M., Khan, S.A. & Hossain, M.D., 2024. Research and application of polypropylene: a review. Discover Nano, 19(1), 2. DOI: https:// doi.org/10.1186/s11671-023-03952-z
-Jahromi, G., Andalibizade, B. and Vossough, S., 2010. Engineering Properties of Nanoclay Modified Asphalt Concrete Mixtures. The Arabian Journal for Science and Engineering, 35(1), 89-103.
-Khakifirouz, A., Samariha, A., Karbaschi, A., Benakachi, M.A. and Beigloo, J.G., 2019. Nanoclay’s influence on mechanical and thermal properties of a polypropylene/poplar wood flour nanocomposite. BioResources, 14(4): 8267-8277.
-Kuan, H.T.N., Tan, M.Y., Shen, Y. and Yahya, M.Y., 2021. Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review. Composites and Advanced Materials, 30: 26349833211007502. DOI: https://doi.org/10.1177 /26349833211007502
-Lopez-Ramirez, R., Flores-Vazquez, A.L., Castrejon-Sanchez, V., Tellez-Jurado, L., Dorantes-Rosales, H.J. and Soriano-Vargas, O., 2023. Study of mechanical, thermal, and microstructural properties of polypropylene/ceramic waste composites. Materials Science, 29(2): 224-233. DOI: https://doi.org/10.5755/j02.ms.30947
-Maurya, S.D., Purushothaman, M., Krishnan, P.S.G. and Nayak, S.K., 2014. Effect of nano-calcium carbonate content on the properties of poly (urethane methacrylate) nanocomposites. Journal of Thermoplastic Composite Materials, 27(12), 1711-1727. DOI: https://doi.org/10.1177/08927057 1247 5011
-Mirzaei, J., Fereidoon, A. and Ghasemi-Ghalebahman, A., 2021. Experimental study on mechanical properties of polypropylene nanocomposites reinforced with a hybrid graphene/PP-g-MA/kenaf fiber by response surface methodology. Journal of Elastomers & Plastics, 53(8), 1063-1089. DOI: https://doi.org/10.1177/00952443211015362
-Nandi, P. and Das, D., 2022. Mechanical, thermo-mechanical and biodegradation behaviors of green-composites prepared from woven structural nettle (Girardinia diversifolia) reinforcement and poly (lactic acid) fibers. Industrial Crops and Products, 175: 114247. DOI: https://doi.org/10. 1016 /j.indcrop.2021.114247
-Nikmatin, S., Syafiuddin, A., Hong Kueh, A.B. and Maddu, A., 2017. Physical, thermal, and mechanical properties of polypropylene composites filled with rattan nanoparticles. Journal of applied research and technology, 15(4): 386-395. DOI: https://doi.org/ 10.1016/j.jart.2017.03.008
-Núñez-Decap, M., Wechsler-Pizarro, A. and Vidal-Vega, M., 2021. Mechanical, physical, thermal and morphological properties of polypropylene composite materials developed with particles of peach and cherry stones. Sustainable Materials and Technologies, 29: e00300. DOI: https://doi.org/ 10.1016/j.susmat.2021.e00300
-Rao, J., Zhou, Y. and Fan, M., 2018. Revealing the interface structure and bonding mechanism of coupling agent treated WPC. Polymers, 10(3): 266. DOI: https://doi.org/10.3390/polym10030266
-Samariha, A., Hemmasi, A.H., Ghasemi, I., Bazyar, B. and Nemati, M., 2015. Effect of nanoclay contents on properties, of bagasse flour/reprocessed high density polyethylene/nanoclay composites. Maderas. Ciencia y tecnología, 17(3): 637-646. DOI: http://dx.doi.org/ 10.4067/S0718-221X201500 5 000056
-Sanvezzo, P.B. and Branciforti, M.C., 2021. Recycling of industrial waste based on jute fiber-polypropylene: Manufacture of sustainable fiber-reinforced polymer composites and their characterization before and after accelerated aging. Industrial Crops and Products, 168: 113568. DOI: https://doi.org/ 10. 1016/j.indcrop.2021.113568
-Tan, W.L., Ahmad, A.L., Leo, C.P. and Lam, S. S., 2020. A critical review to bridge the gaps between carbon capture, storage and use of CaCO3. Journal of CO2 Utilization, 42: 101333. DOI: https://doi.org/ 10.1016/j.jcou.2020.101333
-Wang, C., Xian, Y., Cheng, H., Li, W. and Zhang, S., 2015. Tensile properties of bamboo fiber-reinforced polypropylene composites modified by impregnation with calcium carbonate nanoparticles, BioRes. 10(4): 6783-6796.
-Wang, C., Wang, S., Cheng, H., Xian, Y. and Zhang, S., 2017. Mechanical properties and prediction for nanocalcium carbonate-treated bamboo fiber/high-density polyethylene composites. Journal of Materials Science, 52: 11482-11495. DOI: https://doi.org/10.1007/s10853-017-1285-1
-Wang, C., Cai, L., Shi, S.Q., Wang, G., Cheng, H. and Zhang, S., 2019. Thermal and flammable properties of bamboo pulp fiber/high-density polyethylene composites: Influence of preparation technology, nano calcium carbonate and fiber content. Renewable Energy, 134, 436-445. DOI: https://doi.org/ 10.1016/ j.renene.2018.09.051
-Wang, C., Wei, X., Smith, L.M., Wang, G., Zhang, S. and Cheng, H., 2022. Mechanical and rheological properties of bamboo pulp fiber reinforced high density polyethylene composites: influence of nano CaCO3 treatment and manufacturing process with different pressure ratings. Journal of Renewable Materials, 10(7): 1829. DOI: 10.32604/jrm. 2022. 018782
-Xu, B.H., Yu, K.B., Wu, H.C. and Bouchaïr, A., 2022. Mechanical properties and engineering application potential of the densified poplar. Wood Material Science & Engineering, 17(6), 659-667. DOI: https://doi.org/10.1080/17480272.2021.1924857
|