- سعیدی، م، رضایی، ع، کاظمی، م. ۱۳۹۷. بررسی رابطه بین بافت خاک و کربنات کلسیم معادل در خاکهای آهکی منطقه خوزستان. مجله علوم خاک ایران، 11(4)، 59-70 https://doi.org/1001.1.2008479.1389.41.2.7.8.
- شهبازی، ک. 1403. روش های تجزیه خاک نمونهبرداری، روشهای شیمیایی و فیزیکی. چاپ اول، انتشارات موسسه تحقیقات خاک و آب، کرج، ایران. 1074 صفحه
- قائمیان، ن، حسنی، ق، طهماسبی، ک، نعمتی، ط، مسیح آبادی، م. ح. 1388. درجهبندی ویژگیهای اراضی و نیازهای زویشی سیب جهت تهیه جداول پایه تناسب اراضی در استان آذربایجانغربی. گزارش نهائی، شماره 89/770، موسسه تحقیقات خاک و آب، تهران، ایران. 47 صفحه.
- محمدی، م، رضایی، ن. و حسینی، ر. 1395. تأثیر مواد آلی بر تثبیت پتاسیم در خاکهای آهکی ایران. مجله علوم خاک ایران، دوره 23، 4، 521-530.
- مظفری، ع. ۱۳۹۳. شناخت و اصلاح خاکهای آهکی. انتشارات دانشگاه تهران، تهران، ایران.
- نقیبی، ح. ۱۳۹۵. تأثیر شرایط اقلیمی بر تشکیل کربنات کلسیم در خاکهای مناطق خشک ایران. پژوهشهای خاک و آب ایران، 20(3)، 33-45.
- Adak, T. and Pandey, G., 2020. Estimating soil nutrient index vis− à− vis mango orchard productivity of Lucknow region, Uttar Pradesh, India. Tropical Plant Research, 7(3), pp.622-626. DOI:22271/tpr.2020.v7.i3.077
- Adak, T., Pandey, G., Singh, V.K. and Rajan, S., 2019. Assessing soil nutrient index in mango orchards of Maal area, Lucknow, UP. Journal of Soil and Water Conservation, 18(3), pp.263-267. DOI:5958/2455-7145.2019.00037.7
- Ahemad, M., and Khan, M. S., 2011. Assessment of plant growth promoting activities of phosphate solubilizing bacteria in calcareous soils. Environmental Monitoring and Assessment, 174(1), 533–546. https://doi.org/10.1007/s10661-010-1471-3
- Arunrat, N., Kongsurakan, P., Sereenonchai, S. and Hatano, R., 2020. Soil organic carbon in sandy paddy fields of Northeast Thailand: A review. Agronomy, 10(8), p.1061. DOI:3390/agronomy10081061
- Brady, N.C., 1984. The nature and properties of soils. 15th Edition. Pearson Education.
- Bohn, H.L., McNeal, B.L. and O’Connor, G.A., 2001. Soil Chemistry 3rd Edition. Canada: John & Wiley Sons. Inc. http://dx. doi. org/10.1002/jpln. 19861490315.
- Stevenson, F.J., 1994. Humus chemistry: genesis, composition, reactions. John Wiley & Sons.
- Bertrand, I.H.R.A., Holloway, R.E., Armstrong, R.D. and McLaughlin, M.J., 2003. Chemical characteristics of phosphorus in alkaline soils from southern Australia. Soil Research, 41(1), pp.61-76. https://doi.org/10.1071/SR02021(csiro.au)
- Bolan, N., Srivastava, P., Rao, C.S., Satyanaraya, P.V., Anderson, G.C., Bolan, S., Nortjé, G.P., Kronenberg, R., Bardhan, S., Abbott, L.K. and Zhao, H., 2023. Distribution, characteristics and management of calcareous soils. Advances in agronomy, 182, pp.81-130. DOI: 1016/bs.agron.2023.06.002
- Durkhshan, S., 2022. Nutrient Indexing of High Density Apple Orchards of SKUAST-K, Shalimar (Doctoral dissertation, SKUAST Kashmir).
- Gentile, R.M., Boldingh, H.L., Campbell, R.E., Gee, M., Gould, N., Lo, P., McNally, S., Park, K.C., Richardson, A.C., Stringer, L.D. and Vereijssen, J., 2022. System nutrient dynamics in orchards: a research roadmap for nutrient management in apple and kiwifruit. A review. Agronomy for Sustainable Development, 42(4), p.64. DOI:1007/s13593-022-00798-0
- Gomez, K.A. and Gomez, A.A., 1984. Statistical procedures for agricultural research. John wiley & sons.
- Hinsinger, P., 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and soil, 237(2), pp.173-195. DOI:1023/A:1013351617532
- Khosravi, V., Gholizadeh, A., Žížala, D., Kodešová, R., Saberioon, M., Agyeman, P.C., Vokurková, P., Juřicová, A., Spasić, M. and Borůvka, L., 2024. On the impact of soil texture on local scale organic carbon quantification: From airborne to spaceborne sensing domains. Soil and Tillage Research, 241, p.106125. DOI:1016/j.still.2024.106125
- Leytem, A.B. and Mikkelsen, R.L., 2005. The nature of phosphorus in calcareous soils. Better Crops, 89(2), pp.11-13.
- Marschner, H., 2012. Marschner's mineral nutrition of higher plants. Academic press.
- Küçükdönmezer, B., Şeker, C. and Negiş, H., 2025. Influence of Soil Quality on Apple Yield: Evaluating Physical, Chemical, and Biological Indicators in Semi-dwarf Orchards. Applied Fruit Science, 67(3), pp.1-14. DOI:1007/s10341-025-01410-x
- Masrat, M., 2019. Characterization, Classification and Nutrient Indexing of High Density Apple Orchard Soils of North Kashmir (Doctoral dissertation, SKUAST Kashmir).
- Men, X., Fan, Z., Wang, Y., Wang, Y., Wang, Y. and Han, Z., 2023, March. Evaluation of fertilizer inputs and soil nutrient status in apple orchards in China. In Journal of Physics: Conference Series (Vol. 2463, No. 1, p. 012069). IOP Publishing. DOI:1088/1742-6596/2463/1/012069
- Moore, A., Hines, S., Brown, B., Falen, C., de Haro Marti, M., Chahine, M., Norell, R., Ippolito, J., Parkinson, S. and Satterwhite, M., 2014. Soil–Plant Nutrient Interactions on Manure‐Enriched Calcareous Soils. Agronomy Journal, 106(1), pp.73-80. DOI:2134/agronj2013.0345
- Ortiz, C., Pierotti, S., Molina, M.G. and Bosch-Serra, À.D., 2023. Soil fertility and phosphorus leaching in irrigated calcareous soils of the Mediterranean region. Environmental Monitoring and Assessment, 195(11), p.1376. DOI:1007/s10661-023-11901-7
- Nelson, D.W., Sommers, L.E., Page, A.L., Miller, R.H. and Keeney, D.R., 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy monograph, 9, pp.539-579.
- Parker, F.W., Nelson, W.L. and Winters, E., 1951. The broad interpretation and application of soil test information. Agronomy Journal, 43, pp.105-112.
- Quesada, C.A., Paz, C., Oblitas Mendoza, E., Phillips, O.L., Saiz, G. and Lloyd, J., 2020. Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil, 6(1), pp.53-88. DOI:5194/soil-2019-24
- Ramírez, P.B., Machado, S., Singh, S., Plunkett, R. and Calderón, F.J., 2023. Addressing the effects of soil organic carbon on water retention in US Pacific Northwest wheat–soil systems. Frontiers in Soil Science, 3, p.1233886. DOI:3389/fsoil.2023.1233886
- Razeghi, H.R., Safaee, F., Geranghadr, A., Ghadir, P. and Javadi, A.A., 2024. Investigating accelerated carbonation for alkali activated slag stabilized sandy soil. Geotechnical and Geological Engineering, 42(1), pp.575-592. DOI:1007/s10706-023-02590-7
- Sharma, M.P., & Shukla, A.K., 1997. Soil Chemistry. Rastogi Publications.
- Sharpley, A.N. 1996. Availability of phosphorus to plants in relation to soil factors and P removal processes. Plant and Soil, 198, pp. 71–77.
- Sparks, D.L., 2003. Environmental soil chemistry: An overview. Environmental soil chemistry, 2, pp.1-42.
- Von Wandruszka, R., 2006. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochemical transactions, 7, pp.1-8. https://doi.org/10.1186/1467-4866-7-6
- Stewart, C.E., Paustian, K., Conant, R.T., Plante, A.F. and Six, J., 2007. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry, 86, pp.19-31. DOI:2136/sssaj2007.0104
- Usowicz, B. and Lipiec, J., 2021. Spatial variability of saturated hydraulic conductivity and its links with other soil properties at the regional scale. Scientific Reports, 11(1), p.8293. https://doi.org/10.1038/s41598-021-86862-3
- Yang, M., Wang, S., Zhao, X., Gao, X. and Liu, S., 2020. Soil properties of apple orchards on China's Loess Plateau. Science of the Total Environment, 723, p.138041. DOI:1016/j.scitotenv.2020.138041
- Zhang, W., Lu, J.S., Bai, J., Khan, A., Zhao, L., Wang, W., Zhu, S.G., Liu, S.T., Jin, J.M., Nyanchera, G.D. and Li, S.Q., 2024. Reduced fertilization boosts soil quality and economic benefits in semiarid apple orchard: A two-year appraisal of fertigation strategy. Agricultural Water Management, 295, p.108766. DOI: 1016/j.agwat.2024.108766
- Zhang, S., Wang, L., Chen, S., Fan, B., Huang, S. and Chen, Q., 2022. Enhanced phosphorus mobility in a calcareous soil with organic amendments additions: Insights from a long term study with equal phosphorus input. Journal of Environmental Management, 306, p.114451. https://doi.org/10.1016/j.jenvman.2022.114451
- Zhang, M., Li, C., Li, Y. C., & Harris, W. G., 2014. Phosphate minerals and solubility in native and agricultural calcareous soils. Geoderma. 232, pp. 164-171. DOI:1016/j.geoderma.2014.05.015
- Zaheri Abdehvand, Z., Karimi, D., Rangzan, K. and Mousavi, S.R., 2024. Assessment of soil fertility and nutrient management strategies in calcareous soils of Khuzestan province: A case study using the Nutrient Index Value method. Environmental Monitoring and Assessment, 196(6), p.503. DOI:1007/s10661-024-12665-4
- Zhou, M. and Li, Y., 2001. Phosphorus‐sorption characteristics of calcareous soils and limestone from the southern Everglades and adjacent farmlands. Soil Science Society of America Journal, 65(5), pp.1404-1412. DOI:2136/sssaj2009.0137
- Wang, X.Q., Zhang, X.C., Pei, X.J. and Ren, G.F., 2022. Effect of the particle size composition and dry density on the water retention characteristics of remolded loess. Minerals, 12(6), p.698. DOI:3390/min12060698
- Wang, J., & Li, X. (2023). Comprehensive analysis of soil physicochemical properties and nutrient status in apple orchards. Agronomy, 15(14), 1520. DOI:3390/horticulturae9080903
- Wang, Z., Liu, R., Fu, L., Tao, S. and Bao, J., 2023. Effects of orchard grass on soil fertility and nutritional status of fruit trees in Korla fragrant pear orchard. Horticulturae, 9(8), p.903. DOI:3390/horticulturae9080903
- Wang, S., Xu, L. and Hao, M., 2022. Impacts of long-term micronutrient fertilizer application on soil properties and micronutrient availability. International Journal of Environmental Research and Public Health, 19(23), p.16358. DOI: 3390/ijerph192316358. PMID: 36498430; PMCID: PMC9736148.
|