- Batool, A., Li, S., Yue, D., Ullah, F., Zhao, L., Cheng, Z., Wang, C., Duan, H., Lv, G., ul Haq, Z., Ahmed, K., Gui, Y., Zhu, L., Xiao, Y. and Xiong, Y., 2024. Root-to-shoot signaling positively mediates source-sink relation in late growth stages in diploid and tetraploid wheat. BMC Plant Biology, 24: 492. https://doi.org/10.1186/s12870-024-05046-z
- Celik, H., Katkat, A.V., Asık, B.B. and Turan, M.A., 2010. Effect of foliar-applied humic acid to dry weight and mineral nutrient uptake of maize under calcareous soil conditions. Communications in Soil Science and Plant Analysis, 42(1): 29-38. http://dx.doi.org/10.1080/00103624.2011.528490
- El-Labban, H.M., Menesy, F., Kotb, S.A., Fetouh, M.I. and Naga, N.M., 2016. Effect of nano fertilization, chemical and humic acid on the vegetative growth, chemical composition and oil yield of Cuminum cyminum L. Menoufia Journal of Plant Production, 1(3): 177-199. http://dx.doi.org/10.21608/mjppf.2016.176663
- Gomes, G.L.B. and Scortecci, K.C., 2021. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biology, 23(6): 894-904. https://doi.org/10.1111/plb.13303
- Gowthamchand, N.J. and Sujaina, M., 2023. A review on humic substances: Their significance in agriculture as stimulations of plant physiological growth and development. The Pharma Innovation Journal, 12(7): 177-184. https://www.thepharmajournal.com/archives/2023/vol12issue7S/PartC/S-12-6-112-776.pdf
- Jamil, M., Saher, A., Javed, S., Farooq, Q. and Shakir, M., 2021. A review on potential role of auxins in plants, current applications and future directions. Journal of Biodiversity and Environmental Sciences, 18(1): 11-16. https://sde.hal.science/hal-03601670v1
- Khorasaninejad, S., Alizadeh Ahmadabadi, A. and Hemmati, K., 2018. The effect of humic acid on leaf morphophysiological and phytochemical properties of Echinacea purpurea L. under water deficit stress. Scientia Horticulturae, 239: 314-323.
- Kurepa, J. and Smalle, J.A., 2022. Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. International Journal of Molecular Sciences, 23(4): 1933. https://doi.org/10.3390/ijms23041933
- Mandal, S.M., Mondal, K.C., Dey, S. and Pati, B.R., 2007. Optimization of cultural and nutritional conditions for Indole 3-acetic Acid (IAA) production by a Rhizobium sp. isolated from root nodules of Vigna mungo (L.) Hepper. Research Journal of Microbiology, 2(3): 239-246. https://scialert.net/abstract/?doi=jm.2007.239.246
- McIntyre, K.E., Bush, D.R. and Argueso C.T., 2021. Cytokinin regulation of source-sink relationships in plant-pathogen interactions. Frontiers in Plant Science, 12: 677585. https://doi.org/10.3389/fpls.2021.677585
- Mytych, W. and Aebisher, D., 2022. Valeriana officinalis - a review. European Journal of Clinical and Experimental Medicine, 20(3): 260-265. http://dx.doi.org/10.15584/ejcem.2022.3.2
- Noaema, A.H., Alabdulla, S.A. and Alhasany, A.R., 2020. Impact of foliar application of seaweed extract and nano humic acid on growth and yield of wheat varieties. International Journal of Agricultural and Statistical Sciences, 16(1): 1169-1174. https://connectjournals.com/03899.2020.16.1169
- Ogunyale, O.G., Fawibe, O.O., Ajiboye, A.A. and Agboola, D.A., 2014. A review of plant growth substances: their forms, structures, synthesis and functions. Journal of Advanced Laboratory Research in Biology, 5(4): 152-168. https://media.neliti.com/media/publications/279098-a-review-of-plant-growth-substances-thei-36f4403a.pdf
- Riseh, R.S., Hassanisaadi, M., Vatankhah, M., Varma, R.S. and Kumar Thakur, V., 2024. Nano/micro‑structural supramolecular biopolymers: Innovative networks with the boundless potential in sustainable agriculture. Nano-Micro Letters, 16(1): 147. https://doi.org/10.1007/s40820-024-01348-x
- Roychoudhry, S. and Kepinski, S., 2024. Auxin in root development. Cold Spring Harbor Perspectives in Biology, 14(4): a039933. https://doi.org/10.1101/cshperspect.a039933
- Schlegel, H.G., 1956. Die verwertung organischer sauren durch chlorella in lincht. Planta, 47(5): 510-515. https://doi.org/10.1007/BF01935418
- Shah, Z.H., Rehman, H.M., Akhtar, T., Alsamadany, H., Hamooh, B.T., Mujtaba, T., Daur, I., Al Zahrani, Y., Alzahrani, H.A.S., Ali, S., Yang, S.H. and Chung, G., 2018. Humic substances: Determining potential molecular regulatory processes in plants. Frontiers in Plant Science, 9: 263. https://doi.org/10.3389/fpls.2018.00263
- Ünyayar, S., Topcuoglu, S.F. and Ünyayar, A. 1996. A modified method for extraction and identification of Indole-3-Acetic Acid (IAA), Gibberellic Acid (GA3), Abscisic Acid (ABA) and zeatin produced by Phanerochaete chrysosporium ME446. Bulgarian Journal of Plant Physiology, 22(3-4): 105-110.
- Xiong, Q., Wang, S., Chen, X., Jing, J., Jin, Y., Li, H., Zhang, C., Jiang, Y. and Ye, X., 2024. Nano-sized humic acid improves phosphate fertiliser efficiency in chilli pepper. Pedospher, in press. http://dx.doi.org/10.1016/j.pedsph.2024.09.007
- Zain, N., Zainal, M., Abu Bakar, T., Zakaria, S., Mukhtar, N. and Naher, L., 2022. Efficacy of auxin foliar application on the growth and yield of green Romaine (Lactuca sativa L. var. Jericho) grown under nutrient film technique (NFT) hydroponic system. Earth Environtal Science, 1102(1): 012012. http://dx.doi.org/10.1088/1755-1315/1102/1/012012
- Zhaoa, Z., Wanga, C., Yua, X., Tian, Y., Wanga, W., Zhanga, Y., Baia, W., Yangc, N., Zhangc, T., Zhenga, H., Wang, Q., Lua, J., Leia, D., Hea, X., Chena, K., Gaoa, J., Liua, X., Liua, S., Jianga, L., Wangb, H. and Wan, J., 2022. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. PNAS (Proceedings of the National Academy of Sciences), 119(36): e2121671119. https://doi.org/10.1073/pnas.2121671119