-Alinat, E., Delaunay, N., Archer, X. & Gareil, P., 2015. Correlating molar masses of nitrocelluloses with their intrinsic viscosities measured using capillary electrophoresis instrumentation.
Carbohydrate polymers,
128, 99-104.
https://doi.org/10.1016/j.carbpol.2015. 04.013.
-Amelia, S.T.W., Widiyastuti, W., Nurtono, T., Setyawan, H., Widyastuti, W. & Ardhyananta, H., 2024. Acid hydrolysis roles in transformation of cellulose-I into cellulose-II for enhancing nitrocellulose performance as an energetic polymer. Cellulose, 31(16), 9583-9595. https://doi.org/10.1007/s10570-024-06173-4.
-ASTM International. 1994. ASTM D4795–94: Standard test method for nitrogen content of cellulose nitrate (nitrocellulose). West Conshohocken, PA: ASTM International. https://doi.org/10.1520/D4795-94
-ASTM International. 2022. ASTM D635–22: Standard test method for rate of burning and/or extent and time of burning of plastics in a horizontal position. West Conshohocken, PA: ASTM International
-Budaeva, V.V., Gismatulina, Y.A., Mironova, G.F., Skiba, E.A., Gladysheva, E.K., Kashcheyeva, E. I., ... & Sakovich, G.V., (2019. Bacte rialnanocellulose nitrates.
Nanomateriasl, 9(12), 1694.
https://doi. org/10. 3390/ nano9121694.
-De la Ossa, M.Á.F., Torre, M. & García-Ruiz, C., 2012. Determination of nitrocellulose by capillary electrophoresis with laser-induced fluorescence detection. Analytica chimica acta, 745, 149-155. https://doi.org/10.1016/ j.aca.2012.07.032.
-Fallah, F., Khorasani, M. & Ebrahimi, M., 2018. Factors affecting the properties of nitrocellulose emulsions: A comparative study.
Carbohydrate Polymers,
189, 267-272.
https://doi.org/10. 1016/j. carbpol.2017.11.002.
-Franck, B., Hörmann, H. & Scheibe, S., 1957. Einfluss Einiger Mesomeriefähiger Substituenten Auf Die Asymmetrische NO2‐Valenzschwingung Aromatischer Nitroverbindungen.
Chemische Berichte,
90(3), 330-338.
https://doi.org/10.1002/cber.1957090 0305.
-Gismatulina, Y.A. & Budaeva, V.V., 2024. Cellulose nitrates-blended composites from bacterial and plant-based celluloses. Polymers, 16(9), 1183.
-Ioelovich, M., 2024. Thermodynamic analysis of cellulose nitration. World Journal of Advanced Research and Reviews, 21(3), 485-494. https://doi.org/10.30574/wjarr.2024.21.3.0772.
-Jesuet, M.S.G., Musa, N.M., Idris, N.M., Musa, D.N.S. & Bakansing, S.M., 2019. Properties of Nitrocellulose from Acacia mangium. In Journal of Physics: Conference Series (Vol. 1358, No. 1, p. 012035). IOP Publishing. http:// doi.org/10.1088/1742-6596/1358/1/012035
-John, Josmi, K.S. Archana, Ashley Mariam Thomas, Rose Leena Thomas, Jeena Thomas, Vinoy Thomas, and Unnikrishnan, N.V., 2014. Nitrocellulose Unveiled: A Brief Exploration of Recent Research Progress. Sustainable Chemical Engineering (2024): 146-167. https://doi.org/10.37256/sce.5120243950.
-Karami, M., Resalati, H., Saraean, A. and Dehghani, M., 2017. Production of alpha-cellulose from bagasse and evaluation its characteristics. Journal of Wood and Forest Science and Technology, 24(3), 183-196. doi: 10.22069/jwfst.2017.3857
-Khalid, M.Y., Al Rashid, A., Arif, Z.U., Ahmed, W. & Arshad, H., 2021. Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications.
Journal of Materials Research and Technology,
14, 2601-2623.
https://doi.org/ 10.1016/j.jmrt.2021.07.128.
-Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. & Dorris, A., 2011. Nanocelluloses: a new family of nature‐based materials.
Angewandte Chemie International Edition,
50(24), 5438-5466.
https://doi.org/ 10.1002/anie.201001273.
-Kuhn, L.P., 1949. The Infrared Spectra of Carbohydrates. https://doi.org/10.1016/S0096-5332(08)60203-9.
-Liang, C.Y., & Marchessault, R.H., 1959. Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm.− 1.
Journal of polymer science,
39(135), 269-278.
https://doi.org/10.1002/pol.1959.1203913 521.
-Luo, Q., Zhu, J., Li, Z., Duan, X., Pei, C. & Mao, C., 2018. The solution characteristics of nitrated bacterial cellulose in acetone.
New Journal of Chemistry,
42(22), 18252-18258.
https://doi.org /10. 1039/C8NJ02018C
-Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites.
Chemical Society Reviews,
40(7), 3941-3994.
https://doi.org/10. 1039/C0CS00108B.
-Morris, E., Pulham, C.R. & Morrison, C.A., 2023. Structure and properties of nitrocellulose: approaching 200 years of research.
RSC advances,
13(46), 32321-32333. DOI:
10.1039/D3RA05457H.
-Morris, E., Pulham, C.R. & Morrison, C.A., 2025. Towards understanding and directing the nitration of cellulose. Cellulose, 32(3), 1513-1526.
-Nasir, M., Hashim, R., Sulaiman, O. & Asim, M., 2017. Nanocellulose: Preparation methods and applications. In Cellulose-reinforced nanofibre composites (pp. 261-276). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100957-4.00011-5.
-Nyquist, R.A., 2001. Interpreting infrared, Raman, and nuclear magnetic resonance spectra (Vol. 2). Academic Press., Pages 173-230.
-Pourmortazavi, S.M., Hosseini, S.G., Rahimi-Nasrabadi, M., Hajimirsadeghi, S.S. & Momenian, H., 2009. Effect of nitrate content on thermal decomposition of nitrocellulose.
Journal of hazardous materials,
162(2-3), 1141-1144.
https://doi.org/ 10.1016/ j.jhazmat.2008.05.161.
-Rizkiansyah, R.R., Mardiyati, Y., Hariyanto, A., & Dirgantara, T., 2024. Selecting appropriate cellulose morphology to enhance the nitrogen content of nitrocellulose. RSC advances, 14(38), 28260-28271.
-Saito, Y., Okada, K., Endo, T. & Sakakibara, K., 2023. Highly surface-selective nitration of cellulose nanofibers under mildly acidic reaction conditions. Cellulose, 30(16), 10083-10095. https://doi.org/10.1007/s10570-023-05488-y.
-Sun, D.P., Ma, B., Zhu, C.L., Liu, C.S. & Yang, J.Z., 2010. Novel nitrocellulose made from bacterial cellulose.
journal of Energetic Materials,
28(2), 85-97.
https://doi.org/10.1080/ 07370650903222551.
-Sun, Q. & Qiu, Y., 2022. Effects Of Nitric Acid and Sulfuric Acid on Thermal Stability of Nitrocellulose. https://doi.org/10.21203/rs.3.rs-1322929/v1.
-Tahir, D., Karim, M.R.A., Hu, H., Naseem, S., Rehan, M., Ahmad, M. & Zhang, M., 2022. Sources, chemical functionalization, and commercial applications of nanocellulose and nanocellulose-based composites: a review.
Polymers,
14(21), 4468.
https://doi.org/ 10.3390/polym14214468.
-Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N. & Hussin, M.H., 2020. Nanocellulose: from fundamentals to advanced applications. Frontiers in chemistry, 8, 392. https://doi.org/10.3389/fchem.2020.00392.
-Wang, Q., Gu, Y., Ren, C., Liu, H. & Su, P., 2021, March. Effect of acid concentration on thermal stability of nitrocellulose (NC) for civil use. In
IOP Conference Series: Earth and Environmental Science (Vol. 714, No. 2, p. 022018). IOP Publishing.
https://doi.org /10.1088/1755-1315/714/2/022018
-Xu, Y., Ding, H.G. & Shen, Q., 2007. Influence of the Degree of Polymerization on surface Properties of Cellulose. Chinese Cellulose Science and Technology, 15, 53-56.
-Yusuf, M.O., 2023. Bond characterization in cementitious material binders using Fourier-transform infrared spectroscopy.
Applied Sciences,
13(5), 3353.
https://doi.org/10.3390/ app13053353.